2,379 research outputs found

    Linear Covariant Gauges on the Lattice

    Full text link
    Linear covariant gauges, such as Feynman gauge, are very useful in perturbative calculations. Their nonperturbative formulation is, however, highly non-trivial. In particular, it is a challenge to define linear covariant gauges on a lattice. We consider a class of gauges in lattice gauge theory that coincides with the perturbative definition of linear covariant gauges in the formal continuum limit. The corresponding gauge-fixing procedure is described and analyzed in detail, with an application to the pure SU(2) case. In addition, results for the gluon propagator in the two-dimensional case are given.Comment: 21 pages, 6 figures, 5 tables; added comments and minor changes, 1 figure added, 1 modifie

    More on the non-perturbative Gribov-Zwanziger quantization of linear covariant gauges

    Get PDF
    In this paper, we discuss the gluon propagator in the linear covariant gauges in D=2,3,4D=2,3,4 Euclidean dimensions. Non-perturbative effects are taken into account via the so-called Refined Gribov-Zwanziger framework. We point out that, as in the Landau and maximal Abelian gauges, for D=3,4D=3,4, the gluon propagator displays a massive (decoupling) behaviour, while for D=2D=2, a scaling one emerges. All results are discussed in a setup that respects the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, through a recently introduced non-perturbative BRST transformation. We also propose a minimizing functional that could be used to construct a lattice version of our non-perturbative definition of the linear covariant gauge.Comment: 15 pages, 1 figure; V2 typos fixed and inclusion of section on the ghost propagator. To appear in PhysRev

    Extended Double Lattice BRST, Curci-Ferrari Mass and the Neuberger Problem

    Get PDF
    We present Extended Double BRST on the lattice and extend the Neuberger problem to include the ghost/anti-ghost symmetric formulation of the non-linear covariant Curci-Ferrari (CF) gauges. We then show how a CF mass regulates the 0/0 indeterminate form of physical observables, as observed by Neuberger, and discuss the gauge-parameter and mass dependence of the model.Comment: Prepared for 7th Conference on Quark Confinement and the Hadron Spectrum, Ponta Delgada, Azores, Portugal, 2-7 Sep 2006. 3p

    Non-perturbative treatment of the linear covariant gauges by taking into account the Gribov copies

    Full text link
    In this paper, a proposal for the restriction of the Euclidean functional integral to a region free of infinitesimal Gribov copies in linear covariant gauges is discussed. An effective action, akin to the Gribov-Zwanziger action of the Landau gauge, is obtained which implements the aforementioned restriction. Although originally non-local, this action can be cast in local form by introducing auxiliary fields. As in the case of the Landau gauge, dimension two condensates are generated at the quantum level, giving rise to a refinement of the action which is employed to obtain the tree-level gluon propagator in linear covariant gauges. A comparison of our results with those available from numerical lattice simulations is also provided.Comment: 21 pages, no figures, version to appear in EPJ

    A study of the Gribov copies in linear covariant gauges in Euclidean Yang-Mills theories

    Full text link
    The Gribov copies and their consequences on the infrared behavior of the gluon propagator are investigated in Euclidean Yang-Mills theories quantized in linear covariant gauges. Considering small values of the gauge parameter, it turns out that the transverse component of the gluon propagator is suppressed, while its longitudinal part is left unchanged. A Green function, G_{tr}, which displays infrared enhancement and which reduces to the ghost propagator in the Landau gauge is identified. The inclusion of the dimension two gluon condensate is also considered. In this case, the transverse component of the gluon propagator and the Green function G_{tr} remain suppressed and enhanced, respectively. Moreover, the longitudinal part of the gluon propagator becomes suppressed. A comparison with the results obtained from the studies of the Schwinger-Dyson equations and from lattice simulations is provided.Comment: 20 page

    A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Full text link
    In this work, we study the propagators of matter fields within the framework of the Refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the Refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri et al 2016], the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.Comment: 27 pages, no figures; V2, minor modifications, to appear in EPJ
    • …
    corecore