1,230,858 research outputs found

    Probabilistic data flow analysis: a linear equational approach

    Get PDF
    Speculative optimisation relies on the estimation of the probabilities that certain properties of the control flow are fulfilled. Concrete or estimated branch probabilities can be used for searching and constructing advantageous speculative and bookkeeping transformations. We present a probabilistic extension of the classical equational approach to data-flow analysis that can be used to this purpose. More precisely, we show how the probabilistic information introduced in a control flow graph by branch prediction can be used to extract a system of linear equations from a program and present a method for calculating correct (numerical) solutions.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Flow control design inspired by linear stability analysis

    Get PDF
    In the recent literature, a growing number of research papers have been dedicated to applying the techniques of global stability and sensitivity analysis to the design of flow controls. The controls that are designed in this way are mainly passive or open-loop controls. Among those, we consider here controls that are aimed at linearly stabilizing flow configurations which would be otherwise globally unstable. In particular, a review of the literature on flow controls designed on the basis of stability and sensitivity analysis is presented. The mentioned methods can be rigorously applied to relatively simple flow regimes, typically observed at low values of the Reynolds number. In this respect, the recent literature also demonstrates a large interest in the application of the same methods for the control of coherent large-scale flow structures in turbulent flows, as, for instance, the quasiperiodic shedding of vortices in turbulent wakes. The papers dedicated to this subject are also reviewed here. Finally, all the described methods imply the solution of eigenvalue problems which are at the state-of-the-art for computational complexity. On the one hand, there are attempts to reduce the complexity of the involved computational problems by applying local stability analysis, and some examples are illustrated. On the other hand, recent advances in numerical methods, also concisely reviewed here, allow the manipulation of large eigenvalue problems and greatly simplify the development of numerical tools for stability and sensitivity analysis of complex flow models, often built using existing fluid dynamics codes

    Influence of through-flow on linear pattern formation properties in binary mixture convection

    Full text link
    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.20.-k,47.20.Bp, 47.15.-x,47.54.+rComment: 19 pages, 15 Postscript figure

    The Impact of River Flow Restrictions on Instruments to Control noPoint Nitrate Pollution

    Get PDF
    An economic analysis of policies to control nonpoint source nitrate pollution in the presence of minimum river flow restrictions was undertaken. A non-linear bio-physical economic optimisation model of an intensively cultivated Scottish agricultural catchment was constructed. The presence of minimum river flow controls in the catchment was found to reduce nitrogen pollution. However, by themselves, river flow controls were found not to be a cost effective means to reduce diffuse pollution. River flow controls did not, for the most part, alter relative instrument ranking.

    CPS Transformation of Flow Information, Part II: Administrative Reductions

    Get PDF
    We characterize the impact of a linear beta-reduction on the result of a control-flow analysis. (By ``a linear beta-reduction'' we mean the beta-reduction of a linear lambda-abstraction, i.e., of a lambda-abstraction whose parameter occurs exactly once in its body.) As a corollary, we consider the administrative reductions of a Plotkin-style transformation into continuation-passing style (CPS), and how they affect the result of a constraint-based control-flow analysis and in particular the least element in the space of solutions. We show that administrative reductions preserve the least solution. Since we know how to construct least solutions, preservation of least solutions solves a problem that was left open in Palsberg and Wand's paper ``CPS Transformation of Flow Information.'' Therefore, together, Palsberg and Wand's article ``CPS Transformation of Flow Information'' and the present article show how to map, in linear time, the least solution of the flow constraints of a program into the least solution of the flow constraints of the CPS counterpart of this program, after administrative reductions. Furthermore, we show how to CPS transform control-flow information in one pass. Superseded by BRICS-RS-02-36
    corecore