122,963 research outputs found

    A distributed-memory parallel algorithm for discretized integral equations using Julia

    Full text link
    Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language

    Multilevel quasiseparable matrices in PDE-constrained optimization

    Get PDF
    Optimization problems with constraints in the form of a partial differential equation arise frequently in the process of engineering design. The discretization of PDE-constrained optimization problems results in large-scale linear systems of saddle-point type. In this paper we propose and develop a novel approach to solving such systems by exploiting so-called quasiseparable matrices. One may think of a usual quasiseparable matrix as of a discrete analog of the Green's function of a one-dimensional differential operator. Nice feature of such matrices is that almost every algorithm which employs them has linear complexity. We extend the application of quasiseparable matrices to problems in higher dimensions. Namely, we construct a class of preconditioners which can be computed and applied at a linear computational cost. Their use with appropriate Krylov methods leads to algorithms of nearly linear complexity

    NumGfun: a Package for Numerical and Analytic Computation with D-finite Functions

    Get PDF
    This article describes the implementation in the software package NumGfun of classical algorithms that operate on solutions of linear differential equations or recurrence relations with polynomial coefficients, including what seems to be the first general implementation of the fast high-precision numerical evaluation algorithms of Chudnovsky & Chudnovsky. In some cases, our descriptions contain improvements over existing algorithms. We also provide references to relevant ideas not currently used in NumGfun

    Hardness Results for Structured Linear Systems

    Full text link
    We show that if the nearly-linear time solvers for Laplacian matrices and their generalizations can be extended to solve just slightly larger families of linear systems, then they can be used to quickly solve all systems of linear equations over the reals. This result can be viewed either positively or negatively: either we will develop nearly-linear time algorithms for solving all systems of linear equations over the reals, or progress on the families we can solve in nearly-linear time will soon halt

    Sparse Solution of Underdetermined Linear Equations via Adaptively Iterative Thresholding

    Full text link
    Finding the sparset solution of an underdetermined system of linear equations y=Axy=Ax has attracted considerable attention in recent years. Among a large number of algorithms, iterative thresholding algorithms are recognized as one of the most efficient and important classes of algorithms. This is mainly due to their low computational complexities, especially for large scale applications. The aim of this paper is to provide guarantees on the global convergence of a wide class of iterative thresholding algorithms. Since the thresholds of the considered algorithms are set adaptively at each iteration, we call them adaptively iterative thresholding (AIT) algorithms. As the main result, we show that as long as AA satisfies a certain coherence property, AIT algorithms can find the correct support set within finite iterations, and then converge to the original sparse solution exponentially fast once the correct support set has been identified. Meanwhile, we also demonstrate that AIT algorithms are robust to the algorithmic parameters. In addition, it should be pointed out that most of the existing iterative thresholding algorithms such as hard, soft, half and smoothly clipped absolute deviation (SCAD) algorithms are included in the class of AIT algorithms studied in this paper.Comment: 33 pages, 1 figur
    • …
    corecore