6,991 research outputs found

    On a Linear Chaotic Quantum Harmonic Oscillator

    Get PDF
    We show that a linear quantum harmonic oscillator is chaotic in the sense of Li-Yorke. We also prove that the weighted backward shift map, used as an infinite dimensional linear chaos model, in a separable Hilbert space is chaotic in the sense of Li-Yorke, in addition to being chaotic in the sense of Devaney.Comment: LaTex file. Applied Mathematics Letters, to appea

    Out-of-time-order correlators in quantum mechanics

    Full text link
    The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a particle in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.Comment: 30 pages, 13 figure

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Generating Finite Dimensional Integrable Nonlinear Dynamical Systems

    Full text link
    In this article, we present a brief overview of some of the recent progress made in identifying and generating finite dimensional integrable nonlinear dynamical systems, exhibiting interesting oscillatory and other solution properties, including quantum aspects. Particularly we concentrate on Lienard type nonlinear oscillators and their generalizations and coupled versions. Specific systems include Mathews-Lakshmanan oscillators, modified Emden equations, isochronous oscillators and generalizations. Nonstandard Lagrangian and Hamiltonian formulations of some of these systems are also briefly touched upon. Nonlocal transformations and linearization aspects are also discussed.Comment: To appear in Eur. Phys. J - ST 222, 665 (2013
    • …
    corecore