35,274 research outputs found

    Linear and Parallel Learning of Markov Random Fields

    Full text link
    We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields with untied parameters which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficient, requiring only the local sufficient statistics of the data to estimate parameters

    Distributed Parameter Estimation in Probabilistic Graphical Models

    Full text link
    This paper presents foundational theoretical results on distributed parameter estimation for undirected probabilistic graphical models. It introduces a general condition on composite likelihood decompositions of these models which guarantees the global consistency of distributed estimators, provided the local estimators are consistent

    Unsupervised Bilingual POS Tagging with Markov Random Fields

    Get PDF
    In this paper, we give a treatment to the problem of bilingual part-of-speech induction with parallel data. We demonstrate that naïve optimization of log-likelihood with joint MRFs suffers from a severe problem of local maxima, and suggest an alternative – using contrastive estimation for estimation of the parameters. Our experiments show that estimating the parameters this way, using overlapping features with joint MRFs performs better than previous work on the 1984 dataset.

    Bayesian Structure Learning for Markov Random Fields with a Spike and Slab Prior

    Get PDF
    In recent years a number of methods have been developed for automatically learning the (sparse) connectivity structure of Markov Random Fields. These methods are mostly based on L1-regularized optimization which has a number of disadvantages such as the inability to assess model uncertainty and expensive cross-validation to find the optimal regularization parameter. Moreover, the model's predictive performance may degrade dramatically with a suboptimal value of the regularization parameter (which is sometimes desirable to induce sparseness). We propose a fully Bayesian approach based on a "spike and slab" prior (similar to L0 regularization) that does not suffer from these shortcomings. We develop an approximate MCMC method combining Langevin dynamics and reversible jump MCMC to conduct inference in this model. Experiments show that the proposed model learns a good combination of the structure and parameter values without the need for separate hyper-parameter tuning. Moreover, the model's predictive performance is much more robust than L1-based methods with hyper-parameter settings that induce highly sparse model structures.Comment: Accepted in the Conference on Uncertainty in Artificial Intelligence (UAI), 201

    Emergence of Compositional Representations in Restricted Boltzmann Machines

    Full text link
    Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits dataset MNIST.Comment: Supplementary material available at the authors' webpag
    corecore