132 research outputs found

    A survey on signature-based Gr\"obner basis computations

    Full text link
    This paper is a survey on the area of signature-based Gr\"obner basis algorithms that was initiated by Faug\`ere's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research.Comment: 53 pages, 8 figures, 11 table

    Syzygies among reduction operators

    Get PDF
    We introduce the notion of syzygy for a set of reduction operators and relate it to the notion of syzygy for presentations of algebras. We give a method for constructing a linear basis of the space of syzygies for a set of reduction operators. We interpret these syzygies in terms of the confluence property from rewriting theory. This enables us to optimise the completion procedure for reduction operators based on a criterion for detecting useless reductions. We illustrate this criterion with an example of construction of commutative Gr{\"o}bner basis

    The F5 Criterion revised

    Get PDF
    The purpose of this work is to generalize part of the theory behind Faugere's "F5" algorithm. This is one of the fastest known algorithms to compute a Groebner basis of a polynomial ideal I generated by polynomials f_{1},...,f_{m}. A major reason for this is what Faugere called the algorithm's "new" criterion, and we call "the F5 criterion"; it provides a sufficient condition for a set of polynomials G to be a Groebner basis. However, the F5 algorithm is difficult to grasp, and there are unresolved questions regarding its termination. This paper introduces some new concepts that place the criterion in a more general setting: S-Groebner bases and primitive S-irreducible polynomials. We use these to propose a new, simple algorithm based on a revised F5 criterion. The new concepts also enable us to remove various restrictions, such as proving termination without the requirement that f_{1},...,f_{m} be a regular sequence.Comment: Originally submitted by Arri in 2009, with material added by Perry since 2010. The 2016 editions correct typographical issues not caught in previous editions bring the theory of the body into conformity with the published version of the pape

    Computing periods of rational integrals

    Get PDF
    A period of a rational integral is the result of integrating, with respect to one or several variables, a rational function over a closed path. This work focuses particularly on periods depending on a parameter: in this case the period under consideration satisfies a linear differential equation, the Picard-Fuchs equation. I give a reduction algorithm that extends the Griffiths-Dwork reduction and apply it to the computation of Picard-Fuchs equations. The resulting algorithm is elementary and has been successfully applied to problems that were previously out of reach.Comment: To appear in Math. comp. Supplementary material at http://pierre.lairez.fr/supp/periods

    A Tropical F5 algorithm

    Full text link
    Let K be a field equipped with a valuation. Tropical varieties over K can be defined with a theory of Gr{\"o}bner bases taking into account the valuation of K. While generalizing the classical theory of Gr{\"o}bner bases, it is not clear how modern algorithms for computing Gr{\"o}bner bases can be adapted to the tropical case. Among them, one of the most efficient is the celebrated F5 Algorithm of Faug{\`e}re. In this article, we prove that, for homogeneous ideals, it can be adapted to the tropical case. We prove termination and correctness. Because of the use of the valuation, the theory of tropical Gr{\"o}b-ner bases is promising for stable computations over polynomial rings over a p-adic field. We provide numerical examples to illustrate time-complexity and p-adic stability of this tropical F5 algorithm

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu

    Toric Border Bases

    Get PDF
    We extend the theory and the algorithms of Border Bases to systems of Laurent polynomial equations, defining "toric" roots. Instead of introducing new variables and new relations to saturate by the variable inverses, we propose a more efficient approach which works directly with the variables and their inverse. We show that the commutation relations and the inversion relations characterize toric border bases. We explicitly describe the first syzygy module associated to a toric border basis in terms of these relations. Finally, a new border basis algorithm for Laurent polynomials is described and a proof of its termination is given for zero-dimensional toric ideals

    Signature Gr\"obner bases in free algebras over rings

    Full text link
    We generalize signature Gr\"obner bases, previously studied in the free algebra over a field or polynomial rings over a ring, to ideals in the mixed algebra R[x1,...,xk]⟨y1,…,yn⟩R[x_1,...,x_k]\langle y_1,\dots,y_n \rangle where RR is a principal ideal domain. We give an algorithm for computing them, combining elements from the theory of commutative and noncommutative (signature) Gr\"obner bases, and prove its correctness. Applications include extensions of the free algebra with commutative variables, e.g., for homogenization purposes or for performing ideal theoretic operations such as intersections, and computations over Z\mathbb{Z} as universal proofs over fields of arbitrary characteristic. By extending the signature cover criterion to our setting, our algorithm also lifts some technical restrictions from previous noncommutative signature-based algorithms, now allowing, e.g., elimination orderings. We provide a prototype implementation for the case when RR is a field, and show that our algorithm for the mixed algebra is more efficient than classical approaches using existing algorithms.Comment: 10 page
    • …
    corecore