474 research outputs found

    Linear Active Disturbance Rejection Control for LCL Type Grid-connected Converter

    Get PDF

    Active Disturbance Rejection Control of LCL-Filtered Grid-Connected Inverter Using Pade Approximation

    Get PDF
    In this paper, a simplified robust control is proposed to improve the performance of a three-phase current controlled voltage source inverter connected to the grid through an inductive-capacitive-inductive ( LCL) filter. The presence of the LCL-filter resonance complicates the dynamics of the control system and limits its overall performance, particularly when disturbances and parametric uncertainty are considered. To solve this problem, a robust active damping method based on the linear active disturbance rejection control (LADRC) is proposed. The simplification is made possible by order reduction in the plant transfer function using Padé approximation. Simulation results show that the proposed LADRC-based current controller achieves high power quality and good dynamic performance, in the presence of parameters uncertainties as well as external disturbances. An experimental prototype is built to verify the effectiveness and practicality of the proposed control strategy

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Reliability Enhancing Control Algorithms for Two-Stage Grid-Tied Inverters

    Get PDF
    In the photovoltaic (PV) generation system, two types of grid-tied inverter systems are usually deployed: the single-stage grid-tied inverter system and the two-stage grid-tied inverter system. In the single-stage grid-tied inverter system, the input of the inverter is directly connected to the PV arrays, while an additional dc-dc stage is inserted between the PV arrays and the dc-ac inverter in the two-stage design. The additional dc-dc stage could provide a stable dc-link voltage to the inverter, which also enables new design possibilities, including the multi-MPPT operation and solar-plus-storage application. Thus, the two-stage grid-tied inverter has been widely used in the PV generation system.As the core component of the PV generation system, the reliability of the grid-tied inverter determines the overall robustness of the system. The two-stage grid-tied inverter system includes three parts: the dc-dc stage, dc-link capacitor, and dc-ac inverter. Thus, the reliability of the two-stage grid-tied inverter relies on the reliability of each part. The dc-dc stage is used to provide a stable dc-link voltage to the inverter. However, when the inverter stage provides constant power to the grid, the load of the dc-dc stage becomes the constant power load (CPL), which will deteriorate the stability of the dc-dc stage. The dc-link capacitor is used to attenuate the voltage ripple on the dc-link and balance the transient power mismatch between the dc-dc stage and the dc-ac stage. However, during the operation of the inverter system, the degradation of the capacitor will reduce the converter reliability, and even result in system failure. The inverter stage is connected to the grid through the output filter, and the LCL type filter has been commonly used due to its superior performance. The resonance of the LCL filter must be properly damped to enhance the inverter stability. However, the grid-side impedance will lead to the resonant frequency drifting of the LCL filter, which will worsen the stability margin of the inverter. Thus, the control design of the two-stage grid-tied inverter system must consider those reliability challenges. In this work, three control algorithms are proposed to solve the reliability challenges. For the dc-dc stage, an uncertainty and disturbance estimator (UDE) based robust voltage control scheme is proposed. The proposed voltage control scheme can actively estimate and compensate for the disturbance of the dc-dc stage. Both the disturbance rejection performance and the stability margin of the dc-dc stage, especially under the CPL, could be enhanced. For the dc-link capacitor, a high-frequency (HF) signal injection based capacitance estimation scheme is proposed. The proposed estimation scheme can monitor the actual dc-link capacitance in real-time. For the inverter stage, an adaptive extremum seeking control (AESC) based LCL filter resonant frequency estimation scheme is proposed. The AESC-based estimation scheme can estimate the resonant frequency of the LCL filter online. All the proposed reliability enhancing control algorithms could enhance the reliability of the two-stage grid-tied inverter system. Detailed theoretical analysis, simulation studies, and comprehensive experimental studies have been performed to validate the effectiveness

    Hysteretic control of grid-side current for a single-phase LCL grid-connected voltage source converter

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a new approach to control the grid-side current of LCL-grid connected voltage source converters using hysteretic relay feedback controllers. The closed loop system is stabilized by designing a local feedback around the relay element. The compensator allows the use of relay feedback controllers by making the controlled plant almost strictly positive real. The article proposes the use of the locus of the perturbed relay system as analysis and design tool and studies orbital stability for several plant and controller conditions. The approach is validated by means of simulation testing.Postprint (author's final draft

    Optimal model reference control design for grid connected voltage source converters

    Get PDF
    Texto en inglés y resumen en inglés y españolEsta tesis se centra en el diseño de controladores H∞ basados en modelos de referencia para su aplicación en el control de convertidores electrónicos de potencia en fuente de tensión (VSC). Se persiguen dos objetivos: el conformado de la admitancia de entrada de un VSC controlado en corriente y el óptimo amortiguamiento activo de filtros resonantes.El diseño de controladores óptimos H∞ aporta ciertas ventajas con respecto al diseño clásico. La principal técnica de diseño H∞ utilizada en la literatura se centra en la minimización de la función de sensibilidad. Ésta permite lidiar con diferentes problemas de compromiso en el diseño de controladores de forma sencilla, como el conformado de la función de lazo, el seguimiento de referencias, la estabilidad del sistema o la limitación del ancho de banda de control. Sin embargo, esta técnica carece de la habilidad de conformar la fase de funciones en lazo cerrado. La técnica H∞ basada en modelos de referencia soluciona este problema.La principal contribución de esta tesis es la aplicación de esta técnica para el moldeado de la admitancia en lazo cerrado de VSCs, la cual juega un importante papel tanto en la estabilidad de sistemas complejos como en la mejora de la calidad de energía en la red. Utilizando la técnica propuesta, el diseñador podrá especificar, en un gran ancho de banda y en un solo marco de diseño, tanto la admitancia del convertidor del convertidor (en modulo y en fase), como el comportamiento del seguimiento de referencias. El proceso de diseño finaliza con la síntesis de un controlador discreto ejecutable en una plataforma digital (DSP).Las posibilidades que presenta esta nueva metodología de diseño son amplias. La presente propuesta se ilustra con el control de un rectificador activo conectado a la red, pero es lo suficientemente flexible como para aplicarse en otros esquemas de control y topologías de convertidor. Se considerarán tres aplicaciones del control de admitancia: el diseño de aplicaciones resistivas en un gran ancho de banda, las cuales mejoran la robustez en la conexión estable a red débiles, el diseño de aplicaciones con una admitancia baja, las cuales mejoran el rechazo de (sub/inter)armónicos de la tensión de red en el control de corriente, y el diseño de aplicaciones con una admitancia alta, que al conectarse en paralelo a la red actúan como estabilizadores de ésta. La metodología de diseño de cada controlador, así como sus limitaciones, implementación y los resultados experimentales obtenidos son detallados.De forma complementaria, se explora la técnica de diseño basada en modelos de referencia para el amortiguamiento óptimo de resonancias en filtros LCL. La idea es diseñar un amortiguador activo que, una vez conectado, moldee la dinámica del filtro LCL de tal manera que este se comporte como un filtro L. Esto permitirá el posterior uso de sencillos controladores de corriente diseñados para filtro L, evitando la complejidad del diseño de controladores para filtros LCL, sin renunciar con ello a su gran capacidad de filtrado. La metodología de diseño es lo suficientemente general como para presentar diferentes estructuras de entrada/salida para el amortiguador. Los resultados obtenidos demuestran la mejora en la robustez del sistema

    Single-sensor control of LCL-filtered grid-connected inverters

    Get PDF

    Enhanced resonant current controller for grid-connected converters with LCL filter

    Get PDF
    Conventional resonant controllers (RCs) are commonly used in the current control of grid-tied converters with LCL filter due to their advantages, such as zero steady-state error at both fundamental sequences, easy design process, and straightforward implementation. Nevertheless, these traditional solutions do not permit to place the closed-loop poles of the system in convenient locations when dealing with a fourth-order plant model such as the LCL filter plus the computation delay. Therefore, the reference tracking and the disturbance rejection are deficient in terms of transient behavior and depend on the LCL filter. Furthermore, an additional active damping method usually has to be designed in order to ensure stability. This paper presents an enhanced current RC with stable and fast response, negligible overshoot, good disturbance rejection, and low controller effort for grid-tied converters with LCL filter. The developed solution uses a direct discrete-time pole-placement strategy from the classical control theory (using transfer functions), involving two extra filters, to enhance the performance of the RC. In this manner, the complexity of state-space methods from modern control theory is avoided. Simulation and experimental results are provided to verify the effectiveness of the proposed control scheme.Ministerio de Ciencia e InnovaciónAgencia Estatal de Investigación | Ref. DPI2016-75832-RMinisterio de Economía y Competitividad | Ref. BES-2013-06314
    corecore