25,598 research outputs found

    Probabilistic Methodology and Techniques for Artefact Conception and Development

    Get PDF
    The purpose of this paper is to make a state of the art on probabilistic methodology and techniques for artefact conception and development. It is the 8th deliverable of the BIBA (Bayesian Inspired Brain and Artefacts) project. We first present the incompletness problem as the central difficulty that both living creatures and artefacts have to face: how can they perceive, infer, decide and act efficiently with incomplete and uncertain knowledge?. We then introduce a generic probabilistic formalism called Bayesian Programming. This formalism is then used to review the main probabilistic methodology and techniques. This review is organized in 3 parts: first the probabilistic models from Bayesian networks to Kalman filters and from sensor fusion to CAD systems, second the inference techniques and finally the learning and model acquisition and comparison methodologies. We conclude with the perspectives of the BIBA project as they rise from this state of the art

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Bayesian robot Programming

    Get PDF
    We propose a new method to program robots based on Bayesian inference and learning. The capacities of this programming method are demonstrated through a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we present instances of behavior combinations, sensor fusion, hierarchical behavior composition, situation recognition and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex robot program. The advantages and drawbacks of this approach are discussed along with these different experiments and summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The scope of possible applications is obviously much broader than robotics

    Conditioned emergence: a dissipative structures approach to transformation

    Get PDF
    This paper presents a novel framework for the management of organisational transformation, defined here as a relatively rapid transition from one archetype to another. The concept of dissipative structures, from the field of complexity theory, is used to develop and explain a specific sequence of activities which underpin effective transformation. This sequence integrates selected concepts from the literatures on strategic change, organisational learning and business processes; in so doing, it introduces a degree of prescriptiveness which differentiates it from other managerial interpretations of complexity theory. Specifically, it proposes a three-stage process: first, the organisation conditions the outcome of the transformation process by articulating and reconfiguring the rules which underpin its deep structure; second, it takes steps to move from its current equilibrium and, finally, it moves into a period where positive and negative feedback loops become the focus of managerial attention. The paper argues that by managing at the level of deep structure in social systems, organisations can gain some influence over self-organising processes which are typically regarded as unpredictable in the natural sciences. However, the paper further argues that this influence is limited to archetypal features and that detailed forms and behaviours are emergent properties of the system. Two illustrative case-vignettes are presented to give an insight into the practical application of the model before conclusions are reached which speculate on the implications of this approach for strategy research

    Probabilistic Inference in Queueing Networks

    Get PDF
    Although queueing models have long been used to model the performance of computer systems, they are out of favor with practitioners, because they have a reputation for requiring unrealistic distributional assumptions. In fact, these distributional assumptions are used mainly to facilitate analytic approximations such as asymptotics and large-deviations bounds. In this paper, we analyze queueing networks from the probabilistic modeling perspective, applying inference methods from graphical models that afford significantly more modeling flexibility. In particular, we present a Gibbs sampler and stochastic EM algorithm for networks of M/M/1 FIFO queues. As an application of this technique, we localize performance problems in distributed systems from incomplete system trace data. On both synthetic networks and an actual distributed Web application, the model accurately recovers the system’s service time using 1 % of the available trace data.
    • 

    corecore