108,717 research outputs found

    The parameterized complexity of some geometric problems in unbounded dimension

    Full text link
    We study the parameterized complexity of the following fundamental geometric problems with respect to the dimension dd: i) Given nn points in \Rd, compute their minimum enclosing cylinder. ii) Given two nn-point sets in \Rd, decide whether they can be separated by two hyperplanes. iii) Given a system of nn linear inequalities with dd variables, find a maximum-size feasible subsystem. We show that (the decision versions of) all these problems are W[1]-hard when parameterized by the dimension dd. %and hence not solvable in O(f(d)nc){O}(f(d)n^c) time, for any computable function ff and constant cc %(unless FPT=W[1]). Our reductions also give a nΩ(d)n^{\Omega(d)}-time lower bound (under the Exponential Time Hypothesis)

    Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time

    Full text link
    We present the first almost-linear time algorithm for constructing linear-sized spectral sparsification for graphs. This improves all previous constructions of linear-sized spectral sparsification, which requires Ω(n2)\Omega(n^2) time. A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing spectral sparsification: Random sampling by effective resistance, and adaptive constructions based on barrier functions.Comment: 22 pages. A preliminary version of this paper is to appear in proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Constructing Time Machines

    Get PDF
    The existence of time machines, understood as spacetime constructions exhibiting physically realised closed timelike curves (CTCs), would raise fundamental problems with causality and challenge our current understanding of classical and quantum theories of gravity. In this paper, we investigate three proposals for time machines which share some common features: cosmic strings in relative motion, where the conical spacetime appears to allow CTCs; colliding gravitational shock waves, which in Aichelburg-Sexl coordinates imply discontinuous geodesics; and the superluminal propagation of light in gravitational radiation metrics in a modified electrodynamics featuring violations of the strong equivalence principle. While we show that ultimately none of these constructions creates a working time machine, their study illustrates the subtle levels at which causal self-consistency imposes itself, and we consider what intuition can be drawn from these examples for future theories.Comment: 36 pages, 14 figures, TeX with harvmac; Review article prepared for Int. J. Mod. Phys.

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    On some problems in combinatorial geometry

    Get PDF

    On the Complexity of Bandit Linear Optimization

    Get PDF
    We study the attainable regret for online linear optimization problems with bandit feedback, where unlike the full-information setting, the player can only observe its own loss rather than the full loss vector. We show that the price of bandit information in this setting can be as large as dd, disproving the well-known conjecture that the regret for bandit linear optimization is at most d\sqrt{d} times the full-information regret. Surprisingly, this is shown using "trivial" modifications of standard domains, which have no effect in the full-information setting. This and other results we present highlight some interesting differences between full-information and bandit learning, which were not considered in previous literature
    • …
    corecore