22 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    On the complexity of dominating set problems related to the minimum all-ones problem

    Get PDF
    The minimum all-ones problem and the connected odd dominating set problem were shown to be NP-complete in different papers for general graphs, while they are solvable in linear time (or trivial) for trees, unicyclic graphs, and series-parallel graphs. The complexity of both problems when restricted to bipartite graphs was raised as an open question. Here we solve both problems. For this purpose, we introduce the related decision problem of the existence of an odd dominating set without isolated vertices, and study its complexity. Our main result shows that this new problem is NP-complete, even when restricted to bipartite graphs. We use this result to deduce that the minimum all-ones problem and the connected odd dominating set problem are also NP-complete for bipartite graphs. We show that all three problems are solvable in linear time for graphs with bounded treewidth. We also show that the new problem remains NP-complete when restricted to other graph classes, e.g., planar graphs, graphs with girth at least five, and graphs with a small maximum degree, in particular 3-regular graphs. \ud \u

    Linear-Time Algorithms for Edge-Based Problems

    Get PDF
    There is a dearth of algorithms that deal with edge-based problems in trees, specifically algorithms for edge sets that satisfy a particular parameter. The goal of this thesis is to create a methodology for designing algorithms for these edge-based problems. We will present a variant of the Wimer method [Wimer et al. 1985] [Wimer 1987] that can handle edge properties. We call this variant the Wimer edge variant. The thesis is divided into three sections, the first being a chapter devoted to defining and discussing the Wimer edge variant in depth, showing how to develop an algorithm using this variant, and an example of this process, including a run of an algorithm developed using this method. The second section involves algorithms developed using the Wimer edge variant. We will provide algorithms for a variety of edge parameters, including four different matching parameters (connected, disconnected, induced and 2-matching), three different domination parameters (edge, total edge and edge-vertex) and two covering parameters (edge cover and edge cover irredundance). Each of these algorithms are discussed in detail and run in linear time. The third section involves an attempt to characterize the Wimer edge variant. We show how the variant can be applied to three classes of graphs: weighted trees, unicyclic graphs and generalized series-parallel graphs. For each of these classes, we detail what adaptations are required (if any) and design an algorithm, including showing a run on an example graph. The fourth chapter is devoted to a discussion of what qualities a parameter has to have in order to be likely to have a solution using the Wimer edge variant. Also in this chapter we discuss classes of graphs that can utilize the Wimer edge variant. Other topics discussed in this thesis include a literature review, and a discussion of future work. There are plenty of options for future work on this topic, which hopefully this thesis can inspire. The intent of this thesis is to provide the foundation for future algorithms and other work in this area

    The eccentricity spread of weak-friendship graphs

    Get PDF

    Learning-powered computer-assisted counterexample search

    Full text link
    Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Kolja Knauer[en] This thesis explores the great potential of computer-assisted proofs in the advancement of mathematical knowledge, with a special focus on using computers to refute conjectures by finding counterexamples, sometimes a humanly impossible task. In recent years, mathematicians have become more aware that machine learning techniques can be extremely helpful for finding counterexamples to conjectures in a more efficient way than by using exhaustive search methods. In this thesis we do not only present the theoretical background behind some of these methods but also implement them to try to refute some graph theory conjectures

    Explicit near-Ramanujan graphs of every degree

    Full text link
    For every constant d3d \geq 3 and ϵ>0\epsilon > 0, we give a deterministic poly(n)\mathrm{poly}(n)-time algorithm that outputs a dd-regular graph on Θ(n)\Theta(n) vertices that is ϵ\epsilon-near-Ramanujan; i.e., its eigenvalues are bounded in magnitude by 2d1+ϵ2\sqrt{d-1} + \epsilon (excluding the single trivial eigenvalue of~dd).Comment: 26 page

    Odd dominanting sets in graphs

    Get PDF

    Laplacian energy of graphs and digraphs.

    Get PDF
    Spectral graph theory (Algebraic graph theory) which emerged in 1950s and 1960s is the study of properties of a graph in relationship to the characteristic polynomial, eigenvalues and eigenvectors of matrices associated to the graph. The major source of research in spectral graph theory has been the study of relationship between the structural and spectral properties of graphs. Another source has research in quantum chemistry. Just as astronomers study stellar spectra to determine the make-up of distant stars, one of the main goals in spectral graph theory is to deduce the principal properties and structure of a graph from its graph spectrum (or from a short list of easily computable invariants). The spectral approach for general graphs is a step in this direction.Digital copy of Thesis.University of Kashmir
    corecore