1,162 research outputs found

    Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

    Get PDF
    We give a fixed-parameter tractable algorithm that, given a parameter kk and two graphs G1,G2G_1,G_2, either concludes that one of these graphs has treewidth at least kk, or determines whether G1G_1 and G2G_2 are isomorphic. The running time of the algorithm on an nn-vertex graph is 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5 time that, for a given graph GG on nn vertices, either concludes that the treewidth of GG is at least kk, or: * finds in an isomorphic-invariant way a graph c(G)\mathfrak{c}(G) that is isomorphic to GG; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes GG together with a tree decomposition of GG of width O(k4)O(k^4). Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for G1G_1 and G2G_2 are equal.Comment: Full version of a paper presented at FOCS 201

    Efficient Generation of Stable Planar Cages for Chemistry

    Full text link
    In this paper we describe an algorithm which generates all colored planar maps with a good minimum sparsity from simple motifs and rules to connect them. An implementation of this algorithm is available and is used by chemists who want to quickly generate all sound molecules they can obtain by mixing some basic components.Comment: 17 pages, 7 figures. Accepted at the 14th International Symposium on Experimental Algorithms (SEA 2015

    Dynamic Complexity of Planar 3-connected Graph Isomorphism

    Full text link
    Dynamic Complexity (as introduced by Patnaik and Immerman) tries to express how hard it is to update the solution to a problem when the input is changed slightly. It considers the changes required to some stored data structure (possibly a massive database) as small quantities of data (or a tuple) are inserted or deleted from the database (or a structure over some vocabulary). The main difference from previous notions of dynamic complexity is that instead of treating the update quantitatively by finding the the time/space trade-offs, it tries to consider the update qualitatively, by finding the complexity class in which the update can be expressed (or made). In this setting, DynFO, or Dynamic First-Order, is one of the smallest and the most natural complexity class (since SQL queries can be expressed in First-Order Logic), and contains those problems whose solutions (or the stored data structure from which the solution can be found) can be updated in First-Order Logic when the data structure undergoes small changes. Etessami considered the problem of isomorphism in the dynamic setting, and showed that Tree Isomorphism can be decided in DynFO. In this work, we show that isomorphism of Planar 3-connected graphs can be decided in DynFO+ (which is DynFO with some polynomial precomputation). We maintain a canonical description of 3-connected Planar graphs by maintaining a database which is accessed and modified by First-Order queries when edges are added to or deleted from the graph. We specifically exploit the ideas of Breadth-First Search and Canonical Breadth-First Search to prove the results. We also introduce a novel method for canonizing a 3-connected planar graph in First-Order Logic from Canonical Breadth-First Search Trees

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape
    corecore