56,901 research outputs found

    On the Recognition of Fuzzy Circular Interval Graphs

    Get PDF
    Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.Comment: 12 pages, 2 figure

    Subclasses of Normal Helly Circular-Arc Graphs

    Full text link
    A Helly circular-arc model M = (C,A) is a circle C together with a Helly family \A of arcs of C. If no arc is contained in any other, then M is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, then M is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.Comment: 39 pages, 13 figures. A previous version of the paper (entitled Proper Helly Circular-Arc Graphs) appeared at WG'0

    Bounded Representations of Interval and Proper Interval Graphs

    Full text link
    Klavik et al. [arXiv:1207.6960] recently introduced a generalization of recognition called the bounded representation problem which we study for the classes of interval and proper interval graphs. The input gives a graph G and in addition for each vertex v two intervals L_v and R_v called bounds. We ask whether there exists a bounded representation in which each interval I_v has its left endpoint in L_v and its right endpoint in R_v. We show that the problem can be solved in linear time for interval graphs and in quadratic time for proper interval graphs. Robert's Theorem states that the classes of proper interval graphs and unit interval graphs are equal. Surprisingly the bounded representation problem is polynomially solvable for proper interval graphs and NP-complete for unit interval graphs [Klav\'{\i}k et al., arxiv:1207.6960]. So unless P = NP, the proper and unit interval representations behave very differently. The bounded representation problem belongs to a wider class of restricted representation problems. These problems are generalizations of the well-understood recognition problem, and they ask whether there exists a representation of G satisfying some additional constraints. The bounded representation problems generalize many of these problems

    Unit Grid Intersection Graphs: Recognition and Properties

    Full text link
    It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid
    corecore