3,619 research outputs found

    The Hardness of Finding Linear Ranking Functions for Lasso Programs

    Full text link
    Finding whether a linear-constraint loop has a linear ranking function is an important key to understanding the loop behavior, proving its termination and establishing iteration bounds. If no preconditions are provided, the decision problem is known to be in coNP when variables range over the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals. The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and possibly indicates an even stronger lower bound (subject to open problems in VAS theory). The lower bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also given for the problem of deciding if a linear ranking-function supported by a particular form of inductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State Systems", for the opportunity to present an early draft of this wor

    Ranking and Repulsing Supermartingales for Reachability in Probabilistic Programs

    Full text link
    Computing reachability probabilities is a fundamental problem in the analysis of probabilistic programs. This paper aims at a comprehensive and comparative account on various martingale-based methods for over- and under-approximating reachability probabilities. Based on the existing works that stretch across different communities (formal verification, control theory, etc.), we offer a unifying account. In particular, we emphasize the role of order-theoretic fixed points---a classic topic in computer science---in the analysis of probabilistic programs. This leads us to two new martingale-based techniques, too. We give rigorous proofs for their soundness and completeness. We also make an experimental comparison using our implementation of template-based synthesis algorithms for those martingales

    Improving search order for reachability testing in timed automata

    Get PDF
    Standard algorithms for reachability analysis of timed automata are sensitive to the order in which the transitions of the automata are taken. To tackle this problem, we propose a ranking system and a waiting strategy. This paper discusses the reason why the search order matters and shows how a ranking system and a waiting strategy can be integrated into the standard reachability algorithm to alleviate and prevent the problem respectively. Experiments show that the combination of the two approaches gives optimal search order on standard benchmarks except for one example. This suggests that it should be used instead of the standard BFS algorithm for reachability analysis of timed automata

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS

    Full text link
    Vector Addition Systems with States (VASS) provide a well-known and fundamental model for the analysis of concurrent processes, parameterized systems, and are also used as abstract models of programs in resource bound analysis. In this paper we study the problem of obtaining asymptotic bounds on the termination time of a given VASS. In particular, we focus on the practically important case of obtaining polynomial bounds on termination time. Our main contributions are as follows: First, we present a polynomial-time algorithm for deciding whether a given VASS has a linear asymptotic complexity. We also show that if the complexity of a VASS is not linear, it is at least quadratic. Second, we classify VASS according to quantitative properties of their cycles. We show that certain singularities in these properties are the key reason for non-polynomial asymptotic complexity of VASS. In absence of singularities, we show that the asymptotic complexity is always polynomial and of the form Θ(nk)\Theta(n^k), for some integer kdk\leq d, where dd is the dimension of the VASS. We present a polynomial-time algorithm computing the optimal kk. For general VASS, the same algorithm, which is based on a complete technique for the construction of ranking functions in VASS, produces a valid lower bound, i.e., a kk such that the termination complexity is Ω(nk)\Omega(n^k). Our results are based on new insights into the geometry of VASS dynamics, which hold the potential for further applicability to VASS analysis.Comment: arXiv admin note: text overlap with arXiv:1708.0925

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized
    corecore