184 research outputs found

    On width measures and topological problems on semi-complete digraphs

    Get PDF
    Under embargo until: 2021-02-01The topological theory for semi-complete digraphs, pioneered by Chudnovsky, Fradkin, Kim, Scott, and Seymour [10], [11], [12], [28], [43], [39], concentrates on the interplay between the most important width measures — cutwidth and pathwidth — and containment relations like topological/minor containment or immersion. We propose a new approach to this theory that is based on outdegree orderings and new families of obstacles for cutwidth and pathwidth. Using the new approach we are able to reprove the most important known results in a unified and simplified manner, as well as provide multiple improvements. Notably, we obtain a number of efficient approximation and fixed-parameter tractable algorithms for computing width measures of semi-complete digraphs, as well as fast fixed-parameter tractable algorithms for testing containment relations in the semi-complete setting. As a direct corollary of our work, we also derive explicit and essentially tight bounds on duality relations between width parameters and containment orderings in semi-complete digraphs.acceptedVersio

    Packing Arc-Disjoint 4-Cycles in Oriented Graphs

    Get PDF
    Given a directed graph G and a positive integer k, the Arc Disjoint r-Cycle Packing problem asks whether G has k arc-disjoint r-cycles. We show that, for each integer r ? 3, Arc Disjoint r-Cycle Packing is NP-complete on oriented graphs with girth r. When r is even, the same result holds even when the input class is further restricted to be bipartite. On the positive side, focusing on r = 4 in oriented graphs, we study the complexity of the problem with respect to two parameterizations: solution size and vertex cover size. For the former, we give a cubic kernel with quadratic number of vertices. This is smaller than the compression size guaranteed by a reduction to the well-known 4-Set Packing. For the latter, we show fixed-parameter tractability using an unapparent integer linear programming formulation of an equivalent problem

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    A 7/3-approximation for feedback vertex sets in tournaments

    Get PDF
    We consider the minimum-weight feedback vertex set problem in tournaments: given a tournament with non-negative vertex weights, remove a minimum-weight set of vertices that intersects all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate by a factor better than 2. We present the first 7/3 approximation algorithm for this problem, improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP 2001]

    A 7/3-Approximation for Feedback Vertex Sets in Tournaments

    Get PDF
    We consider the minimum-weight feedback vertex set problem in tournaments: given a tournament with non-negative vertex weights, remove a minimum-weight set of vertices that intersects all cycles. This problem is NP-hard to solve exactly, and Unique Games-hard to approximate by a factor better than 2. We present the first 7/3 approximation algorithm for this problem, improving on the previously best known ratio 5/2 given by Cai et al. [FOCS 1998, SICOMP 2001]

    On the Complexity of Compressing Two Dimensional Routing Tables with Order

    Get PDF
    International audienceMotivated by routing in telecommunication network using Software Defined Network (SDN) technologies, we consider the following problem of finding short routing lists using aggregation rules. We are given a set of communications X , which are distinct pairs (s, t) ⊆ S × T , (typically S is the set of sources and T the set of destinations), and a port function π : X → P where P is the set of ports. A routing list R is an ordered list of triples which are of the form (s, t, p), If r(s, t) = π(s, t), then we say that (s, t) is properly routed by R and if all communications of X are properly routed, we say that R emulates (X , π). The aim is to find a shortest routing list emulating (X , π). In this paper, we carry out a study of the complexity of the two dual decision problems associated to it. Given a set of communication X , a port function π and an integer k, the A preliminary short version of this work has appeared in [7]. 2 FrĂ©dĂ©ric Giroire et al. first one called Routing List (resp. the second one, called List Reduction) consists in deciding whether there is a routing list emulating (X , π) of size at most k (resp. |X | − k). We prove that both problems are NP-complete. We then give a 3-approximation for List Reduction, which can be generalized to higher dimensions. We also give a 4-approximation for Routing List in the fundamental case when there are only two ports (i.e. |P | = 2), X = S × T and |S| = |T |
    • 

    corecore