258 research outputs found

    Transmitter based techniques for ISI and MAI mitigation in CDMA-TDD downlink

    Get PDF
    The third-generation (3G) of mobile communications systems aim to provide enhanced voice, text and data services to the user. These demands give rise to the complexity and power consumption of the user equipment (UE) while the objective is smaller, lighter and power efficient mobiles. This thesis aims to examine ways of reducing the UE receiver’s computational cost while maintaining a good performance. One prominent multiple access scheme selected for 3G is code division multiple access. Receiver based multiuser detection techniques that utilise the knowledge of the downlink channel by the mobile have been extensively studied in the literature, in order to deal with multiple access and intersymbol interference. However, these techniques result in high mobile receiver complexity. Recently, work has been done on algorithms that transfer the complexity from the UE to the base station by exploiting the fact that in time division duplex mode the downlink channel can be known to the transmitter. By linear precoding of the transmitted signal the user equipment can be simplified to a filter matched to the user’s spreading code. In this thesis the problem of generic linear precoding is analysed theoretically and a method for analytical calculation of BER is developed. The most representative of the developed precoding techniques are described under a common framework, compared and classified as bitwise or blockwise. Bitwise demonstrate particular advantages in terms of complexity and implementation but lack in performance. Two novel bitwise algorithms are presented and analysed. They outperform significantly the existing ones, while maintain a reduced computational cost and realisation simplicity. The first, named inverse filters, is the Wiener solution of the problem after applying a minimum mean squared error criterion with power constraints. The second recruits multichannel adaptive algorithms to achieve the same goal. The base station emulates the actual system in a cell to converge iteratively to the pre-filters that precode the transmitted signals before transmission. The advantages and the performance of the proposed techniques, along with a variety of characteristics are demonstrated by means of Monte Carlo simulations

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201

    Joint precoding and antenna selection in massive mimo systems

    Get PDF
    This thesis presents an overview of massive multiple-input multiple-output (MIMO) systems and proposes new algorithms to jointly precode and select the antennas. Massive MIMO is a new technology, which is candidate for comprising the fifth-generation (5G) of mobile cellular systems. This technology employs a huge amount of antennas at the base station and can reach high data rates under favorable, or asymptotically favorable, propagation conditions, while using simple linear processing. However, massive MIMO systems have some drawbacks, such as the high cost related to the base stations. A way to deal with this issue is to employ antenna selection algorithms at the base stations. These algorithms reduce the number of active antennas, decreasing the deployment and maintenance costs related to the base stations. Moreover, this thesis also describes a class of nonlinear precoders that are rarely addressed in the literature; these techniques are able to generate precoded sparse signals in order to achieve joint precoding and antenna selection. This thesis proposes two precoders belonging to this class, where the number of selected antennas is controlled by a design parameter. Simulation results show that the proposed precoders reach a lower bit-error rate than the classical antenna selection algorithms. Furthermore, simulation results show that the proposed precoders present a linear relation between the aforementioned design parameter that controls the signals’ sparsity and the number of selected antennas. Such relation is invariant to the number of base station’s antennas and the number of terminals served by this base station.Esta dissertação apresenta uma visão geral sobre MIMO (do termo em inglês, multiple-input multiple-output) massivo e propõe novos algoritmos que permitem a pré-codificacão de sinais e a seleção de antenas de forma simultânea. MIMO massivo é uma nova tecnologia candidata para compor a quinta geração (5G) dos sistemas celulares. Essa tecnologia utiliza uma quantidade muito grande de antenas na estação-base e, sob condições de propagação favorável ou assintoticamente favorável, pode alcançar taxas de transmissão elevadas, ainda que utilizando um simples processamento linear. Entretanto, os sistemas MIMO massivo apresentam algumas desvantagens, como por exemplo, o alto custo de implementação das estações-bases. Uma maneira de lidar com esse problema é utilizar algoritmos de seleção de antenas na estação-base. Com esses algoritmos é possível reduzir o número de antenas ativas e consequentemente reduzir o custo nas estações-bases. Essa dissertação também apresenta uma classe pouco estudada de pré-codificadores não-lineares que buscam sinais pré-codificados esparsos para realizar a seleção de antenas conjuntamente com a pré-codificação. Além disso, este trabalho propõem dois novos pré-codificadores pertencentes a essa classe, para os quais o número de antenas selecionadas é controlado por um parâmetro de projeto. Resultados de simulações mostram que os pré-codificadores propostos conseguem uma BER (do termo em inglês, bit-error rate) menor que os algoritmos clássicos usados para selecionar antenas. Além disso, resultados de simulações mostram que os pré-codificadores propostos apresentam uma relação linear com o parâmetro de projeto que controla a quantidade de antenas selecionadas; tal relação independe do número de antenas na estação-base e do número de terminais servidos por essa estação

    Transmit Precoding for Interference Exploitation in the Underlay Cognitive Radio Z-channel

    Get PDF
    This paper introduces novel transmit beamforming approaches for the cognitive radio (CR) Z-channel. The proposed transmission schemes exploit non-causal information about the interference at the SBS to re-design the CR beamforming optimization problem. This is done with the objective to improve the quality of service (QoS) of secondary users by taking advantage of constructive interference in the secondary link. The beamformers are designed to minimize the worst secondary user's symbol error probability (SEP) under constraints on the instantaneous total transmit power, and the power of the instantaneous interference in the primary link. The problem is formulated as a bivariate probabilistic constrained programming (BPCP) problem. We show that the BPCP problem can be transformed for practical SEPs into a convex optimization problem that can be solved, e.g., by the barrier method. A computationally efficient tight approximate approach is also developed to compute the near-optimal solutions. Simulation results and analysis show that the average computational complexity per downlink frame of the proposed approximate problem is comparable to that of the conventional CR downlink beamforming problem. In addition, both the proposed methods offer significant performance improvements as compared to the conventional CR downlink beamforming, while guaranteeing the QoS of primary users on an instantaneous basis, in contrast to the average QoS guarantees of conventional beamformers

    Quantum-aided multi-user transmission in non-orthogonal multiple access systems

    No full text
    With the research on implementing a universal quantum computer being under the technological spotlight, new possibilities appear for their employment in wireless communications systems for reducing their complexity and improving their performance. In this treatise, we consider the downlink of a rank-deficient, multi-user system and we propose the discrete-valued and continuous-valued Quantum-assisted Particle Swarm Optimization (QPSO) algorithms for performing Vector Perturbation (VP) precoding, as well as for lowering the required transmission power at the Base Station (BS), while minimizing the expected average Bit Error Ratio (BER) at the mobile terminals. We use the Minimum BER (MBER) criterion. We show that the novel quantum-assisted precoding methodology results in an enhanced BER performance, when compared to that of a classical methodology employing the PSO algorithm, while requiring the same computational complexity in the challenging rank-deficient scenarios, where the number of transmit antenna elements at the BS is lower than the number of users. Moreover, when there is limited Channel State Information (CSI) feedback from the users to the BS, due to the necessary quantization of the channel states, the proposed quantum-assisted precoder outperforms the classical precoder

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure
    corecore