111 research outputs found

    Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs

    Full text link
    Several recently developed multisymplectic schemes for Hamiltonian PDEs have been shown to preserve associated local conservation laws and constraints very well in long time numerical simulations. Backward error analysis for PDEs, or the method of modified equations, is a useful technique for studying the qualitative behavior of a discretization and provides insight into the preservation properties of the scheme. In this paper we initiate a backward error analysis for PDE discretizations, in particular of multisymplectic box schemes for the nonlinear Schrodinger equation. We show that the associated modified differential equations are also multisymplectic and derive the modified conservation laws which are satisfied to higher order by the numerical solution. Higher order preservation of the modified local conservation laws is verified numerically.Comment: 12 pages, 6 figures, accepted Math. and Comp. Simul., May 200

    New variational and multisymplectic formulations of the Euler-Poincar\'e equation on the Virasoro-Bott group using the inverse map

    Full text link
    We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincar\'e equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels' map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with 22-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.Comment: 19 page

    Multisymplectic formulation of fluid dynamics using the inverse map

    Get PDF
    We construct multisymplectic formulations of fluid dynamics using the inverse of the Lagrangian path map. This inverse map, the ‘back-to-labels’ map, gives the initial Lagrangian label of the fluid particle that currently occupies each Eulerian position. Explicitly enforcing the condition that the fluid particles carry their labels with the flow in Hamilton's principle leads to our multisymplectic formulation. We use the multisymplectic one-form to obtain conservation laws for energy, momentum and an infinite set of conservation laws arising from the particle relabelling symmetry and leading to Kelvin's circulation theorem. We discuss how multisymplectic numerical integrators naturally arise in this approach.</p

    Multisymplectic geometry, variational integrators, and nonlinear PDEs

    Full text link
    This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking the derivative of an action function, and use this structure to prove covariant generalizations of conservation of symplecticity and Noether's theorem. Natural discretization schemes for PDEs, which have these important preservation properties, then follow by choosing a discrete action functional. In the case of mechanics, we recover the variational symplectic integrators of Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve the corresponding discrete multisymplectic form as well as the discrete momentum mappings corresponding to symmetries. We show that the usual notion of symplecticity along an infinite-dimensional space of fields can be naturally obtained by making a spacetime split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon equation, including computational results and a comparison with other discretization schemes.Comment: LaTeX2E, 52 pages, 11 figures, to appear in Comm. Math. Phy

    Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation

    Get PDF
    The cubic nonlinear Schrödinger (NLS) equation with periodic boundary conditions is solvable using Inverse Spectral Theory. The nonlinear spectrum of the associated Lax pair reveals topological properties of the NLS phase space that are difficult to assess by other means. In this paper we use the invariance of the nonlinear spectrum to examine the long time behavior of exponential and multisymplectic integrators as compared with the most commonly used split step approach. The initial condition used is a perturbation of the unstable plane wave solution, which is difficult to numerically resolve. Our findings indicate that the exponential integrators from the viewpoint of efficiency and speed have an edge over split step, while a lower order multisymplectic is not as accurate and too slow to compete. © 2006 Elsevier Inc. All rights reserved

    Energy preserving integration of bi-Ham

    Get PDF
    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the long term preservation of the Hamiltonians and Casimir integrals, which is essential in simulating waves and solitons. Dispersive properties of the AVF integrator are investigated for the linearized equations to examine the nonlinear dynamics after discreization.Publisher's Versio

    Asynchronous Variational Integrators

    Get PDF
    We describe a new class of asynchronous variational integrators (AVI) for nonlinear elastodynamics. The AVIs are distinguished by the following attributes: (i) The algorithms permit the selection of independent time steps in each element, and the local time steps need not bear an integral relation to each other; (ii) the algorithms derive from a spacetime form of a discrete version of Hamilton’s variational principle. As a consequence of this variational structure, the algorithms conserve local momenta and a local discrete multisymplectic structure exactly. To guide the development of the discretizations, a spacetime multisymplectic formulation of elastodynamics is presented. The variational principle used incorporates both configuration and spacetime reference variations. This allows a unified treatment of all the conservation properties of the system.A discrete version of reference configuration is also considered, providing a natural definition of a discrete energy. The possibilities for discrete energy conservation are evaluated. Numerical tests reveal that, even when local energy balance is not enforced exactly, the global and local energy behavior of the AVIs is quite remarkable, a property which can probably be traced to the symplectic nature of the algorith
    • 

    corecore