888 research outputs found

    Covering of ordinals

    Get PDF
    The paper focuses on the structure of fundamental sequences of ordinals smaller than ϵ0\epsilon_0. A first result is the construction of a monadic second-order formula identifying a given structure, whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is given.Comment: Accepted at FSTTCS'0

    Hairdressing in groups: a survey of combings and formal languages

    Full text link
    A group is combable if it can be represented by a language of words satisfying a fellow traveller property; an automatic group has a synchronous combing which is a regular language. This article surveys results for combable groups, in particular in the case where the combing is a formal language.Comment: 17 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTMon1/paper24.abs.htm

    Linearly bounded infinite graphs

    Get PDF
    Linearly bounded Turing machines have been mainly studied as acceptors for context-sensitive languages. We define a natural class of infinite automata representing their observable computational behavior, called linearly bounded graphs. These automata naturally accept the same languages as the linearly bounded machines defining them. We present some of their structural properties as well as alternative characterizations in terms of rewriting systems and context-sensitive transductions. Finally, we compare these graphs to rational graphs, which are another class of automata accepting the context-sensitive languages, and prove that in the bounded-degree case, rational graphs are a strict sub-class of linearly bounded graphs

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3Ă— the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10Ă— for aggregation queries

    The Complexity of Model Checking Higher-Order Fixpoint Logic

    Full text link
    Higher-Order Fixpoint Logic (HFL) is a hybrid of the simply typed \lambda-calculus and the modal \lambda-calculus. This makes it a highly expressive temporal logic that is capable of expressing various interesting correctness properties of programs that are not expressible in the modal \lambda-calculus. This paper provides complexity results for its model checking problem. In particular we consider those fragments of HFL built by using only types of bounded order k and arity m. We establish k-fold exponential time completeness for model checking each such fragment. For the upper bound we use fixpoint elimination to obtain reachability games that are singly-exponential in the size of the formula and k-fold exponential in the size of the underlying transition system. These games can be solved in deterministic linear time. As a simple consequence, we obtain an exponential time upper bound on the expression complexity of each such fragment. The lower bound is established by a reduction from the word problem for alternating (k-1)-fold exponential space bounded Turing Machines. Since there are fixed machines of that type whose word problems are already hard with respect to k-fold exponential time, we obtain, as a corollary, k-fold exponential time completeness for the data complexity of our fragments of HFL, provided m exceeds 3. This also yields a hierarchy result in expressive power.Comment: 33 pages, 2 figures, to be published in Logical Methods in Computer Scienc

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    Collapsible Pushdown Automata and Recursion Schemes

    Get PDF
    International audienceWe consider recursion schemes (not assumed to be homogeneously typed, and hence not necessarily safe) and use them as generators of (possibly infinite) ranked trees. A recursion scheme is essentially a finite typed {deterministic term} rewriting system that generates, when one applies the rewriting rules ad infinitum, an infinite tree, called its value tree. A fundamental question is to provide an equivalent description of the trees generated by recursion schemes by a class of machines. In this paper we answer this open question by introducing collapsible pushdown automata (CPDA), which are an extension of deterministic (higher-order) pushdown automata. A CPDA generates a tree as follows. One considers its transition graph, unfolds it and contracts its silent transitions, which leads to an infinite tree which is finally node labelled thanks to a map from the set of control states of the CPDA to a ranked alphabet. Our contribution is to prove that these two models, higher-order recursion schemes and collapsible pushdown automata, are equi-expressive for generating infinite ranked trees. This is achieved by giving an effective transformations in both directions

    On Infinite Words Determined by Indexed Languages

    Full text link
    We characterize the infinite words determined by indexed languages. An infinite language LL determines an infinite word α\alpha if every string in LL is a prefix of α\alpha. If LL is regular or context-free, it is known that α\alpha must be ultimately periodic. We show that if LL is an indexed language, then α\alpha is a morphic word, i.e., α\alpha can be generated by iterating a morphism under a coding. Since the other direction, that every morphic word is determined by some indexed language, also holds, this implies that the infinite words determined by indexed languages are exactly the morphic words. To obtain this result, we prove a new pumping lemma for the indexed languages, which may be of independent interest.Comment: Full version of paper accepted for publication at MFCS 201
    • …
    corecore