87 research outputs found

    Explicit linear kernels via dynamic programming

    Get PDF
    Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013] to graphs excluding a fixed topological minor. Typically, these results guarantee the existence of linear or polynomial kernels on sparse graph classes for problems satisfying some generic conditions but, mainly due to their generality, it is not clear how to derive from them constructive kernels with explicit constants. In this paper we make a step toward a fully constructive meta-kernelization theory on sparse graphs. Our approach is based on a more explicit protrusion replacement machinery that, instead of expressibility in CMSO logic, uses dynamic programming, which allows us to find an explicit upper bound on the size of the derived kernels. We demonstrate the usefulness of our techniques by providing the first explicit linear kernels for rr-Dominating Set and rr-Scattered Set on apex-minor-free graphs, and for Planar-\mathcal{F}-Deletion on graphs excluding a fixed (topological) minor in the case where all the graphs in \mathcal{F} are connected.Comment: 32 page

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015

    Meta-Kernelization using Well-Structured Modulators

    Get PDF
    Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization

    Linear Kernels for Edge Deletion Problems to Immersion-Closed Graph Classes

    Get PDF
    Suppose F is a finite family of graphs. We consider the following meta-problem, called F-Immersion Deletion: given a graph G and an integer k, decide whether the deletion of at most k edges of G can result in a graph that does not contain any graph from F as an immersion. This problem is a close relative of the F-Minor Deletion problem studied by Fomin et al. [FOCS 2012], where one deletes vertices in order to remove all minor models of graphs from F. We prove that whenever all graphs from F are connected and at least one graph of F is planar and subcubic, then the F-Immersion Deletion problem admits: - a constant-factor approximation algorithm running in time O(m^3 n^3 log m) - a linear kernel that can be computed in time O(m^4 n^3 log m) and - a O(2^{O(k)} + m^4 n^3 log m)-time fixed-parameter algorithm, where n,m count the vertices and edges of the input graph. Our findings mirror those of Fomin et al. [FOCS 2012], who obtained similar results for F-Minor Deletion, under the assumption that at least one graph from F is planar. An important difference is that we are able to obtain a linear kernel for F-Immersion Deletion, while the exponent of the kernel of Fomin et al. depends heavily on the family F. In fact, this dependence is unavoidable under plausible complexity assumptions, as proven by Giannopoulou et al. [ICALP 2015]. This reveals that the kernelization complexity of F-Immersion Deletion is quite different than that of F-Minor Deletion

    Bidimensionality and Kernels

    Get PDF
    Bidimensionality theory was introduced by [E. D. Demaine et al., J. ACM, 52 (2005), pp. 866--893] as a tool to obtain subexponential time parameterized algorithms on H-minor-free graphs. In [E. D. Demaine and M. Hajiaghayi, Bidimensionality: New connections between FPT algorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, 2005, pp. 590--601] this theory was extended in order to obtain polynomial time approximation schemes (PTASs) for bidimensional problems. In this work, we establish a third meta-algorithmic direction for bidimensionality theory by relating it to the existence of linear kernels for parameterized problems. In particular, we prove that every minor (resp., contraction) bidimensional problem that satisfies a separation property and is expressible in Countable Monadic Second Order Logic (CMSO) admits a linear kernel for classes of graphs that exclude a fixed graph (resp., an apex graph) H as a minor. Our results imply that a multitude of bidimensional problems admit linear kernels on the corresponding graph classes. For most of these problems no polynomial kernels on H-minor-free graphs were known prior to our work.publishedVersio

    First-Order Model-Checking in Random Graphs and Complex Networks

    Get PDF
    Complex networks are everywhere. They appear for example in the form of biological networks, social networks, or computer networks and have been studied extensively. Efficient algorithms to solve problems on complex networks play a central role in today's society. Algorithmic meta-theorems show that many problems can be solved efficiently. Since logic is a powerful tool to model problems, it has been used to obtain very general meta-theorems. In this work, we consider all problems definable in first-order logic and analyze which properties of complex networks allow them to be solved efficiently. The mathematical tool to describe complex networks are random graph models. We define a property of random graph models called α\alpha-power-law-boundedness. Roughly speaking, a random graph is α\alpha-power-law-bounded if it does not admit strong clustering and its degree sequence is bounded by a power-law distribution with exponent at least α\alpha (i.e. the fraction of vertices with degree kk is roughly O(kα)O(k^{-\alpha})). We solve the first-order model-checking problem (parameterized by the length of the formula) in almost linear FPT time on random graph models satisfying this property with α3\alpha \ge 3. This means in particular that one can solve every problem expressible in first-order logic in almost linear expected time on these random graph models. This includes for example preferential attachment graphs, Chung-Lu graphs, configuration graphs, and sparse Erd\H{o}s-R\'{e}nyi graphs. Our results match known hardness results and generalize previous tractability results on this topic

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts
    corecore