866 research outputs found

    Precoding-Based Network Alignment For Three Unicast Sessions

    Full text link
    We consider the problem of network coding across three unicast sessions over a directed acyclic graph, where each sender and the receiver is connected to the network via a single edge of unit capacity. We consider a network model in which the middle of the network only performs random linear network coding, and restrict our approaches to precoding-based linear schemes, where the senders use precoding matrices to encode source symbols. We adapt a precoding-based interference alignment technique, originally developed for the wireless interference channel, to construct a precoding-based linear scheme, which we refer to as as a {\em precoding-based network alignment scheme (PBNA)}. A primary difference between this setting and the wireless interference channel is that the network topology can introduce dependencies between elements of the transfer matrix, which we refer to as coupling relations, and can potentially affect the achievable rate of PBNA. We identify all possible such coupling relations, and interpret these coupling relations in terms of network topology and present polynomial-time algorithms to check the presence of these coupling relations. Finally, we show that, depending on the coupling relations present in the network, the optimal symmetric rate achieved by precoding-based linear scheme can take only three possible values, all of which can be achieved by PBNA.Comment: arXiv admin note: text overlap with arXiv:1202.340

    SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity

    Get PDF
    Diversity is an intrinsic property of wireless networks. Recent years have witnessed the emergence of many distributed protocols like ExOR, MORE, SOAR, SOFT, and MIXIT that exploit receiver diversity in 802.11-like networks. In contrast, the dual of receiver diversity, sender diversity, has remained largely elusive to such networks. This paper presents SourceSync, a distributed architecture for harnessing sender diversity. SourceSync enables concurrent senders to synchronize their transmissions to symbol boundaries, and cooperate to forward packets at higher data rates than they could have achieved by transmitting separately. The paper shows that SourceSync improves the performance of opportunistic routing protocols. Specifically, SourceSync allows all nodes that overhear a packet in a wireless mesh to simultaneously transmit it to their nexthops, in contrast to existing opportunistic routing protocols that are forced to pick a single forwarder from among the overhearing nodes. Such simultaneous transmission reduces bit errors and improves throughput. The paper also shows that SourceSync increases the throughput of 802.11 last hop diversity protocols by allowing multiple APs to transmit simultaneously to a client, thereby harnessing sender diversity. We have implemented SourceSync on the FPGA of an 802.11-like radio platform. We have also evaluated our system in an indoor wireless testbed, empirically showing its benefits.National Science Foundation (U.S.) (Award CNS-0831660)United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks Progra

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/
    • …
    corecore