20,139 research outputs found

    A novel framework for centrifugal pump fault diagnosis by selecting fault characteristic coefficients of Walsh transform and cosine linear discriminant analysis.

    Get PDF
    In this paper, we propose a three-stage lightweight framework for centrifugal pump fault diagnosis. First, the centrifugal pump vibration signatures are fast transformed using a Walsh transform, and Walsh spectra are obtained. To overcome the hefty noise produced by macro-structural vibration, the proposed method selects the fault characteristic coefficients of the Walsh spectrum. In the second stage, statistical features in the time and Walsh spectrum domain are extracted from the selected fault characteristic coefficients of the Walsh transform. These extracted raw statistical features result in a hybrid high-dimensional space. Not all these extracted features help illustrate the condition of the centrifugal pump. To overcome this issue, novel cosine linear discriminant analysis is introduced in the third stage. Cosine linear discriminant analysis is a dimensionality reduction technique which selects similar interclass features and adds them to the illustrative feature pool, which contains key discriminant features that represent the condition of the centrifugal pump. To achieve maximum between-class separation, linear discriminant analysis is then applied to the illustrative feature pool. This combination of illustrative feature pool creation and linear discriminant analysis forms the proposed application of cosine linear discriminant analysis. The reduced discriminant feature set obtained from cosine linear discriminant analysis is then given as an input to the K-nearest neighbor classifier for classification. The classification results obtained from the proposed method outperform the previously presented state-of-the-art methods in terms of fault classification accuracy

    Highly sensitive molecular diagnosis of prostate cancer using surplus material washed off from biopsy needles

    Get PDF
    INTRODUCTION: Currently, final diagnosis of prostate cancer (PCa) is based on histopathological analysis of needle biopsies, but this process often bears uncertainties due to small sample size, tumour focality and pathologist’s subjective assessment. METHODS: Prostate cancer diagnostic signatures were generated by applying linear discriminant analysis to microarray and real-time RT–PCR (qRT–PCR) data from normal and tumoural prostate tissue samples. Additionally, after removal of biopsy tissues, material washed off from transrectal biopsy needles was used for molecular profiling and discriminant analysis. RESULTS: Linear discriminant analysis applied to microarray data for a set of 318 genes differentially expressed between non-tumoural and tumoural prostate samples produced 26 gene signatures, which classified the 84 samples used with 100% accuracy. To identify signatures potentially useful for the diagnosis of prostate biopsies, surplus material washed off from routine biopsy needles from 53 patients was used to generate qRT–PCR data for a subset of 11 genes. This analysis identified a six-gene signature that correctly assigned the biopsies as benign or tumoural in 92.6% of the cases, with 88.8% sensitivity and 96.1% specificity. CONCLUSION: Surplus material from prostate needle biopsies can be used for minimal-size gene signature analysis for sensitive and accurate discrimination between non-tumoural and tumoural prostates, without interference with current diagnostic procedures. This approach could be a useful adjunct to current procedures in PCa diagnosis. British Journal of Cancer (2011) 105, 1600–1607. doi:10.1038/bjc.2011.435 www.bjcancer.com Published online 18 October 2011 & 2011 Cancer Research UKMinisterio de Ciencia e Innovacion (PI080274), Fundación Marato TV3, Ministerio de Educacio´n (GEN2001-4856- C13, GEN2001-4865-C13-10 and SAF2005-05109), Ministerio de Sanidad (PI020231), Red Temática de Cáncer of the Instituto Carlos III (ISCIII-RETIC RD06/0020), Xarxa de Bancs de Tumors de Catalunya-ICO (XBTC) and Fundación Ramón Areces.Peer Reviewe

    Multistatic human micro-Doppler classification of armed/unarmed personnel

    Get PDF
    Classification of different human activities using multistatic micro-Doppler data and features is considered in this paper, focusing on the distinction between unarmed and potentially armed personnel. A database of real radar data with more than 550 recordings from 7 different human subjects has been collected in a series of experiments in the field with a multistatic radar system. Four key features were extracted from the micro-Doppler signature after Short Time Fourier Transform analysis. The resulting feature vectors were then used as individual, pairs, triplets, and all together before inputting to different types of classifiers based on the discriminant analysis method. The performance of different classifiers and different feature combinations is discussed aiming at identifying the most appropriate features for the unarmed vs armed personnel classification, as well as the benefit of combining multistatic data rather than using monostatic data only

    Personnel recognition based on multistatic micro-Doppler and singular value decomposition features

    Get PDF
    The use of micro-Doppler signatures experimentally collected by a multistatic radar system to recognise and classify different people walking is discussed. A suitable feature based on singular value decomposition of the spectrograms is proposed and tested with different types of classifiers. It is shown that high accuracy of between 97 and 99% can be achieved when multistatic data are used to perform the classification

    Performance Analysis of Classification Algorithms for Activity Recognition using Micro-Doppler Feature

    Get PDF
    Classification of different human activities using micro-Doppler data and features is considered in this study, focusing on the distinction between walking and running. 240 recordings from 2 different human subjects were collected in a series of simulations performed in the real motion data from the Carnegie Mellon University Motion Capture Database. The maximum the micro-Doppler frequency shift and the period duration are utilized as two classification criterions. Numerical results are compared against several classification techniques including the Linear Discriminant Analysis (LDA), Naïve Bayes (NB), K-nearest neighbors (KNN), Support Vector Machine(SVM) algorithms. The performance of different classifiers is discussed aiming at identifying the most appropriate features for the walking and running classification

    Assessing movement of rainbow trout and common smelt between Lake Rotoiti and Lake Rotorua using otolith chemical signatures: A summary of work so far

    Get PDF
    This study used otolith microchemistry to investigate movement of common smelt and rainbow trout between Lake Rotorua and Lake Rotoiti. Rainbow trout were collected from Lake Rotoiti, Lake Rotorua and the Ohau Channel, and smelt were collected from several locations in Lake Rotoiti and Lake Rotorua

    Dimensionality Reduction of Hyperspectral Signatures for Optimized Detection of Invasive Species

    Get PDF
    The aim of this thesis is to investigate the use of hyperspectral reflectance signals for the discrimination of cogongrass (Imperata cylindrica) from other subtly different vegetation species. Receiver operating characteristics (ROC) curves are used to determine which spectral bands should be considered as candidate features. Multivariate statistical analysis is then applied to the candidate features to determine the optimum subset of spectral bands. Linear discriminant analysis (LDA) is used to compute the optimum linear combination of the selected subset to be used as a feature for classification. Similarly, for comparison purposes, ROC analysis, multivariate statistical analysis, and LDA are utilized to determine the most advantageous discrete wavelet coefficients for classification. The overall system was applied to hyperspectral signatures collected with a handheld spectroradiometer (ASD) and to simulated satellite signatures (Hyperion). A leave-one-out testing of a nearest mean classifier for the ASD data shows that cogongrass can be detected amongst various other grasses with an accuracy as high as 87.86% using just the pure spectral bands and with an accuracy of 92.77% using the Haar wavelet decomposition coefficients. Similarly, the Hyperion signatures resulted in classification accuracies of 92.20% using just the pure spectral bands and with an accuracy of 96.82% using the Haar wavelet decomposition coefficients. These results show that hyperspectral reflectance signals can be used to reliably detect cogongrass from subtly different vegetation

    Tensor Analysis and Fusion of Multimodal Brain Images

    Get PDF
    Current high-throughput data acquisition technologies probe dynamical systems with different imaging modalities, generating massive data sets at different spatial and temporal resolutions posing challenging problems in multimodal data fusion. A case in point is the attempt to parse out the brain structures and networks that underpin human cognitive processes by analysis of different neuroimaging modalities (functional MRI, EEG, NIRS etc.). We emphasize that the multimodal, multi-scale nature of neuroimaging data is well reflected by a multi-way (tensor) structure where the underlying processes can be summarized by a relatively small number of components or "atoms". We introduce Markov-Penrose diagrams - an integration of Bayesian DAG and tensor network notation in order to analyze these models. These diagrams not only clarify matrix and tensor EEG and fMRI time/frequency analysis and inverse problems, but also help understand multimodal fusion via Multiway Partial Least Squares and Coupled Matrix-Tensor Factorization. We show here, for the first time, that Granger causal analysis of brain networks is a tensor regression problem, thus allowing the atomic decomposition of brain networks. Analysis of EEG and fMRI recordings shows the potential of the methods and suggests their use in other scientific domains.Comment: 23 pages, 15 figures, submitted to Proceedings of the IEE
    corecore