173 research outputs found

    Linear Datalog and Bounded Path Duality of Relational Structures

    Full text link
    In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem \csp(\best) with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL

    nn-permutability and linear Datalog implies symmetric Datalog

    Full text link
    We show that if A\mathbb A is a core relational structure such that CSP(A\mathbb A) can be solved by a linear Datalog program, and A\mathbb A is nn-permutable for some nn, then CSP(A\mathbb A) can be solved by a symmetric Datalog program (and thus CSP(A\mathbb A) lies in deterministic logspace). At the moment, it is not known for which structures A\mathbb A will CSP(A\mathbb A) be solvable by a linear Datalog program. However, once somebody obtains a characterization of linear Datalog, our result immediately gives a characterization of symmetric Datalog

    Caterpillar dualities and regular languages

    Get PDF
    We characterize obstruction sets in caterpillar dualities in terms of regular languages, and give a construction of the dual of a regular family of caterpillars. We show that these duals correspond to the constraint satisfaction problems definable by a monadic linear Datalog program with at most one EDB per rule

    Datalog and Constraint Satisfaction with Infinite Templates

    Full text link
    On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates. If the template Gamma is omega-categorical, we present various equivalent characterizations of those Gamma such that the constraint satisfaction problem (CSP) for Gamma can be solved by a Datalog program. We also show that CSP(Gamma) can be solved in polynomial time for arbitrary omega-categorical structures Gamma if the input is restricted to instances of bounded treewidth. Finally, we characterize those omega-categorical templates whose CSP has Datalog width 1, and those whose CSP has strict Datalog width k.Comment: 28 pages. This is an extended long version of a conference paper that appeared at STACS'06. In the third version in the arxiv we have revised the presentation again and added a section that relates our results to formalizations of CSPs using relation algebra

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    On Constraint Satisfaction Problems below P

    Get PDF
    Symmetric Datalog, a fragment of the logic programming language Datalog, is conjectured to capture all constraint satisfaction problems (CSP) in L. Therefore developing tools that help us understand whether or not a CSP can be defined in symmetric Datalog is an important task. It is widely known that a CSP is definable in Datalog and linear Datalog iff that CSP has bounded treewidth and bounded pathwidth duality, respectively. In the case of symmetric Datalog, Bulatov, Krokhin and Larose ask for such a duality [2008]. We provide two such dualities, and give applications. In particular, we give a short and simple new proof of the result of Dalmau and Larose that "Maltsev + Datalog -> symmetric Datalog" [2008]. In the second part of the paper, we provide some evidence for the conjecture of Dalmau [2002] that every CSP in NL is definable in linear Datalog. Our results also show that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any polynomial size family of monotone read-once nondeterministic branching programs. We consider the following restrictions of the previous models: read-once linDat(suc) (1-linDat(suc)), and monotone readonce nondeterministic branching programs (mnBP1). Although restricted, these models can still define NL-complete problems such as directed st-Connectivity, and also nontrivial problems in NL which are not definable in linear Datalog. We show that any CSP definable by a 1-linDat(suc) program or by a poly-size family of mnBP1s can also be defined by a linear Datalog program. It also follows that a wide class of CSPs ---CSPs which do not have bounded pathwidth duality (e.g. the P-complete Horn-3Sat problem)--- cannot be defined by any 1-linDat(suc) program or by any poly-size family of mnBP1s

    Maltsev digraphs have a majority polymorphism

    Get PDF
    We prove that when a digraph GG has a Maltsev polymorphism, then GG also has a majority polymorphism. We consider the consequences of this result for the structure of Maltsev graphs and the complexity of the Constraint Satisfaction Problem.Comment: 8 pages, 4 figures; minor changes (stylistics, elsarticle LaTeX style, citations); submitted to European Journal of Combinatoric

    Algebra and the Complexity of Digraph CSPs: a Survey

    Get PDF
    We present a brief survey of some of the key results on the interplay between algebraic and graph-theoretic methods in the study of the complexity of digraph-based constraint satisfaction problems

    On Maltsev Digraphs

    Get PDF
    This is an Open Access article, first published by E-CJ on 25 February 2015.We study digraphs preserved by a Maltsev operation: Maltsev digraphs. We show that these digraphs retract either onto a directed path or to the disjoint union of directed cycles, showing in this way that the constraint satisfaction problem for Maltsev digraphs is in logspace, L. We then generalize results from Kazda (2011) to show that a Maltsev digraph is preserved not only by a majority operation, but by a class of other operations (e.g., minority, Pixley) and obtain a O(|VG|4)-time algorithm to recognize Maltsev digraphs. We also prove analogous results for digraphs preserved by conservative Maltsev operations which we use to establish that the list homomorphism problem for Maltsev digraphs is in L. We then give a polynomial time characterisation of Maltsev digraphs admitting a conservative 2-semilattice operation. Finally, we give a simple inductive construction of directed acyclic digraphs preserved by a Maltsev operation, and relate them with series parallel digraphs.Peer reviewedFinal Published versio
    • …
    corecore