5,870 research outputs found

    Linear Convergence of Stochastic Iterative Greedy Algorithms with Sparse Constraints

    Get PDF
    Motivated by recent work on stochastic gradient descent methods, we develop two stochastic variants of greedy algorithms for possibly non-convex optimization problems with sparsity constraints. We prove linear convergence in expectation to the solution within a specified tolerance. This generalized framework applies to problems such as sparse signal recovery in compressed sensing, low-rank matrix recovery, and co-variance matrix estimation, giving methods with provable convergence guarantees that often outperform their deterministic counterparts. We also analyze the settings where gradients and projections can only be computed approximately, and prove the methods are robust to these approximations. We include many numerical experiments which align with the theoretical analysis and demonstrate these improvements in several different settings

    An Asynchronous Parallel Approach to Sparse Recovery

    Full text link
    Asynchronous parallel computing and sparse recovery are two areas that have received recent interest. Asynchronous algorithms are often studied to solve optimization problems where the cost function takes the form βˆ‘i=1Mfi(x)\sum_{i=1}^M f_i(x), with a common assumption that each fif_i is sparse; that is, each fif_i acts only on a small number of components of x∈Rnx\in\mathbb{R}^n. Sparse recovery problems, such as compressed sensing, can be formulated as optimization problems, however, the cost functions fif_i are dense with respect to the components of xx, and instead the signal xx is assumed to be sparse, meaning that it has only ss non-zeros where sβ‰ͺns\ll n. Here we address how one may use an asynchronous parallel architecture when the cost functions fif_i are not sparse in xx, but rather the signal xx is sparse. We propose an asynchronous parallel approach to sparse recovery via a stochastic greedy algorithm, where multiple processors asynchronously update a vector in shared memory containing information on the estimated signal support. We include numerical simulations that illustrate the potential benefits of our proposed asynchronous method.Comment: 5 pages, 2 figure
    • …
    corecore