1,968 research outputs found

    A Primal-Dual Algorithmic Framework for Constrained Convex Minimization

    Get PDF
    We present a primal-dual algorithmic framework to obtain approximate solutions to a prototypical constrained convex optimization problem, and rigorously characterize how common structural assumptions affect the numerical efficiency. Our main analysis technique provides a fresh perspective on Nesterov's excessive gap technique in a structured fashion and unifies it with smoothing and primal-dual methods. For instance, through the choices of a dual smoothing strategy and a center point, our framework subsumes decomposition algorithms, augmented Lagrangian as well as the alternating direction method-of-multipliers methods as its special cases, and provides optimal convergence rates on the primal objective residual as well as the primal feasibility gap of the iterates for all.Comment: This paper consists of 54 pages with 7 tables and 12 figure

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016

    Accelerated Variance Reduced Stochastic ADMM

    Full text link
    Recently, many variance reduced stochastic alternating direction method of multipliers (ADMM) methods (e.g.\ SAG-ADMM, SDCA-ADMM and SVRG-ADMM) have made exciting progress such as linear convergence rates for strongly convex problems. However, the best known convergence rate for general convex problems is O(1/T) as opposed to O(1/T^2) of accelerated batch algorithms, where TT is the number of iterations. Thus, there still remains a gap in convergence rates between existing stochastic ADMM and batch algorithms. To bridge this gap, we introduce the momentum acceleration trick for batch optimization into the stochastic variance reduced gradient based ADMM (SVRG-ADMM), which leads to an accelerated (ASVRG-ADMM) method. Then we design two different momentum term update rules for strongly convex and general convex cases. We prove that ASVRG-ADMM converges linearly for strongly convex problems. Besides having a low per-iteration complexity as existing stochastic ADMM methods, ASVRG-ADMM improves the convergence rate on general convex problems from O(1/T) to O(1/T^2). Our experimental results show the effectiveness of ASVRG-ADMM.Comment: 16 pages, 5 figures, Appears in Proceedings of the 31th AAAI Conference on Artificial Intelligence (AAAI), San Francisco, California, USA, pp. 2287--2293, 201

    Adaptive Relaxed ADMM: Convergence Theory and Practical Implementation

    Full text link
    Many modern computer vision and machine learning applications rely on solving difficult optimization problems that involve non-differentiable objective functions and constraints. The alternating direction method of multipliers (ADMM) is a widely used approach to solve such problems. Relaxed ADMM is a generalization of ADMM that often achieves better performance, but its efficiency depends strongly on algorithm parameters that must be chosen by an expert user. We propose an adaptive method that automatically tunes the key algorithm parameters to achieve optimal performance without user oversight. Inspired by recent work on adaptivity, the proposed adaptive relaxed ADMM (ARADMM) is derived by assuming a Barzilai-Borwein style linear gradient. A detailed convergence analysis of ARADMM is provided, and numerical results on several applications demonstrate fast practical convergence.Comment: CVPR 201
    • …
    corecore