34,896 research outputs found

    Generating a Strong Key for a Stream Cipher Systems Based on Permutation Networks

    Get PDF
    The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests

    Computational Analysis of Interleaving PN-Sequences with Different Polynomials

    Get PDF
    Binary PN-sequences generated by LFSRs exhibit good statistical properties; however, due to their intrinsic linearity, they are not suitable for cryptographic applications. In order to break such a linearity, several approaches can be implemented. For example, one can interleave several PN-sequences to increase the linear complexity. In this work, we present a deep randomness study of the resultant sequences of interleaving binary PN-sequences coming from different characteristic polynomials with the same degree. We analyze the period and the linear complexity, as well as many other important cryptographic properties of such sequences.This work was supported in part by the Spanish State Research Agency (AEI) of the Ministry of Science and Innovation (MICINN), project P2QProMeTe (PID2020-112586RB-I00/AEI/ 10.13039/501100011033). It was also supported by Comunidad de Madrid (Spain) under project CYNAMON (P2018/TCS-4566), co-funded by FSE and European Union FEDER funds. The work of the second author was partially supported by Spanish grant VIGROB-287 of the University of Alicante

    Generating a Strong Key for a Stream Cipher Systems Based on Permutation Networks

    Get PDF
    The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests

    Remarks on the k-error linear complexity of p(n)-periodic sequences

    Get PDF
    Recently the first author presented exact formulas for the number of 2ⁿn-periodic binary sequences with given 1-error linear complexity, and an exact formula for the expected 1-error linear complexity and upper and lower bounds for the expected k-error linear complexity, k >2, of a random 2ⁿn-periodic binary sequence. A crucial role for the analysis played the Chan-Games algorithm. We use a more sophisticated generalization of the Chan-Games algorithm by Ding et al. to obtain exact formulas for the counting function and the expected value for the 1-error linear complexity for pⁿn-periodic sequences over Fp, p prime. Additionally we discuss the calculation of lower and upper bounds on the k-error linear complexity of pⁿn-periodic sequences over Fp
    corecore