1,830 research outputs found

    Network Communication with operators in Dedekind Finite and Stably Finite Rings

    Get PDF
    Messages in communication networks often are considered as "discrete" taking values in some finite alphabet (e.g. a finite field). However, if we want to consider for example communication based on analogue signals, we will have to consider messages that might be functions selected from an infinite function space. In this paper, we extend linear network coding over finite/discrete alphabets/message space to the infinite/continuous case. The key to our approach is to view the space of operators that acts linearly on a space of signals as a module over a ring. It turns out that modules over many rings RR leads to unrealistic network models where communication channels have unlimited capacity. We show that a natural condition to avoid this is equivalent to the ring RR being Dedekind finite (or Neumann finite) i.e. each element in RR has a left inverse if and only if it has a right inverse. We then consider a strengthened capacity condition and show that this requirement precisely corresponds to the class of (faithful) modules over stably finite rings (or weakly finite). The introduced framework makes it possible to compare the performance of digital and analogue techniques. It turns out that within our model, digital and analogue communication outperforms each other in different situations. More specifically we construct: 1) A communications network where digital communication outperforms analogue communication. 2) A communication network where analogue communication outperforms digital communication. The performance of a communication network is in the finite case usually measured in terms band width (or capacity). We show this notion also remains valid for finite dimensional matrix rings which make it possible (in principle) to establish gain of digital versus analogue (analogue versus digital) communications

    Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks

    Get PDF
    n source and destination pairs randomly located in an area want to communicate with each other. Signals transmitted from one user to another at distance r apart are subject to a power loss of r^{-alpha}, as well as a random phase. We identify the scaling laws of the information theoretic capacity of the network. In the case of dense networks, where the area is fixed and the density of nodes increasing, we show that the total capacity of the network scales linearly with n. This improves on the best known achievability result of n^{2/3} of Aeron and Saligrama, 2006. In the case of extended networks, where the density of nodes is fixed and the area increasing linearly with n, we show that this capacity scales as n^{2-alpha/2} for 2<alpha<3 and sqrt{n} for alpha>3. The best known earlier result (Xie and Kumar 2006) identified the scaling law for alpha > 4. Thus, much better scaling than multihop can be achieved in dense networks, as well as in extended networks with low attenuation. The performance gain is achieved by intelligent node cooperation and distributed MIMO communication. The key ingredient is a hierarchical and digital architecture for nodal exchange of information for realizing the cooperation.Comment: 56 pages, 16 figures, submitted to IEEE Transactions on Information Theor

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur
    • …
    corecore