482 research outputs found

    Additive triples of bijections, or the toroidal semiqueens problem

    Full text link
    We prove an asymptotic for the number of additive triples of bijections {1,,n}Z/nZ\{1,\dots,n\}\to\mathbb{Z}/n\mathbb{Z}, that is, the number of pairs of bijections π1,π2 ⁣:{1,,n}Z/nZ\pi_1,\pi_2\colon \{1,\dots,n\}\to\mathbb{Z}/n\mathbb{Z} such that the pointwise sum π1+π2\pi_1+\pi_2 is also a bijection. This problem is equivalent to counting the number of orthomorphisms or complete mappings of Z/nZ\mathbb{Z}/n\mathbb{Z}, to counting the number of arrangements of nn mutually nonattacking semiqueens on an n×nn\times n toroidal chessboard, and to counting the number of transversals in a cyclic Latin square. The method of proof is a version of the Hardy--Littlewood circle method from analytic number theory, adapted to the group (Z/nZ)n(\mathbb{Z}/n\mathbb{Z})^n.Comment: 22 page

    Efficient Quantum Transforms

    Full text link
    Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform. New networks for two wavelet transforms are given. Quantum computation of Fourier transforms for non-Abelian groups is defined. A slightly relaxed definition is shown to simplify the analysis and the networks that computes the transforms. Efficient networks for computing such transforms for a class of metacyclic groups are introduced. A novel network for computing a Fourier transform for a group used in quantum error-correction is also given.Comment: 30 pages, LaTeX2e, 7 figures include

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)F(x)D_a F(x)=F(x+a)-F(x), aG{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    Faster truncated integer multiplication

    Full text link
    We present new algorithms for computing the low n bits or the high n bits of the product of two n-bit integers. We show that these problems may be solved in asymptotically 75% of the time required to compute the full 2n-bit product, assuming that the underlying integer multiplication algorithm relies on computing cyclic convolutions of real sequences.Comment: 28 page

    Connes' Tangent Groupoid and Strict Quantization

    Full text link
    We address one of the open problems in quantization theory recently listed by Rieffel. By developping in detail Connes' tangent groupoid principle and using previous work by Landsman, we show how to construct a strict, flabby quantization, which is moreover an asymptotic morphism and satisfies the reality and traciality constraints, on any oriented Riemannian manifold. That construction generalizes the standard Moyal rule. The paper can be considered as an introduction to quantization theory from Connes' point of view.Comment: LaTeX file, 22 pages (elsart.cls required). Minor changes. Final version to appear in J. Geom. and Phy

    Algorithms for Combinatorial Systems: Well-Founded Systems and Newton Iterations

    Get PDF
    We consider systems of recursively defined combinatorial structures. We give algorithms checking that these systems are well founded, computing generating series and providing numerical values. Our framework is an articulation of the constructible classes of Flajolet and Sedgewick with Joyal's species theory. We extend the implicit species theorem to structures of size zero. A quadratic iterative Newton method is shown to solve well-founded systems combinatorially. From there, truncations of the corresponding generating series are obtained in quasi-optimal complexity. This iteration transfers to a numerical scheme that converges unconditionally to the values of the generating series inside their disk of convergence. These results provide important subroutines in random generation. Finally, the approach is extended to combinatorial differential systems.Comment: 61 page
    corecore