3,615 research outputs found

    A Bayesian framework for functional time series analysis

    Full text link
    The paper introduces a general framework for statistical analysis of functional time series from a Bayesian perspective. The proposed approach, based on an extension of the popular dynamic linear model to Banach-space valued observations and states, is very flexible but also easy to implement in many cases. For many kinds of data, such as continuous functions, we show how the general theory of stochastic processes provides a convenient tool to specify priors and transition probabilities of the model. Finally, we show how standard Markov chain Monte Carlo methods for posterior simulation can be employed under consistent discretizations of the data

    Statistical Mechanics of Soft Margin Classifiers

    Full text link
    We study the typical learning properties of the recently introduced Soft Margin Classifiers (SMCs), learning realizable and unrealizable tasks, with the tools of Statistical Mechanics. We derive analytically the behaviour of the learning curves in the regime of very large training sets. We obtain exponential and power laws for the decay of the generalization error towards the asymptotic value, depending on the task and on general characteristics of the distribution of stabilities of the patterns to be learned. The optimal learning curves of the SMCs, which give the minimal generalization error, are obtained by tuning the coefficient controlling the trade-off between the error and the regularization terms in the cost function. If the task is realizable by the SMC, the optimal performance is better than that of a hard margin Support Vector Machine and is very close to that of a Bayesian classifier.Comment: 26 pages, 12 figures, submitted to Physical Review

    A nonparametric empirical Bayes approach to covariance matrix estimation

    Full text link
    We propose an empirical Bayes method to estimate high-dimensional covariance matrices. Our procedure centers on vectorizing the covariance matrix and treating matrix estimation as a vector estimation problem. Drawing from the compound decision theory literature, we introduce a new class of decision rules that generalizes several existing procedures. We then use a nonparametric empirical Bayes g-modeling approach to estimate the oracle optimal rule in that class. This allows us to let the data itself determine how best to shrink the estimator, rather than shrinking in a pre-determined direction such as toward a diagonal matrix. Simulation results and a gene expression network analysis shows that our approach can outperform a number of state-of-the-art proposals in a wide range of settings, sometimes substantially.Comment: 20 pages, 4 figure

    tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

    Get PDF
    The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential) design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages), are also provided for visualization of tgp objects.
    corecore