40 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Secrecy Performance Analysis of Location-Based Beamforming in Rician Wiretap Channels

    Get PDF
    We propose a new optimal Location-Based Beamforming (LBB) scheme for the wiretap channel, where both the main channel and the eavesdropper's channel are subject to Rician fading. In our LBB scheme the two key inputs are the location of the legitimate receiver and the location of the potential eavesdropper. Notably, our scheme does not require as direct inputs any channel state information of the main channel or the eavesdropper's channel, making it easy to deploy in a host of application settings in which the location inputs are known. Our beamforming solution assumes a multiple-antenna transmitter, a multiple-antenna eavesdropper, and a single-antenna receiver, and its aim is to maximize the physical layer security of the channel. To obtain our solution we first derive the secrecy outage probability of the LBB scheme in a closed-form expression that is valid for arbitrary values of the Rician K-factors of the main channel and the eavesdropper's channel. Using this expression we then determine the location-based beamformer solution that minimizes the secrecy outage probability. To assess the usefulness of our new scheme, and to quantify the value of the location information to the beamformer, we compare our scheme to other schemes, some of which do not utilize any location information. Our new beamformer solution provides optimal physical layer security for a wide range of location-based applications.Comment: 10 pages, 6 figure

    Practical aspects of physical and MAC layer security in visible light communication systems

    Get PDF
    Abstract— Visible light communication (VLC) has been recently proposed as an alternative standard to radio-based wireless networks. Originally developed as a physical media for PANs (Personal area Networks) it evolved into universal WLAN technology with a capability to transport internet suite of network and application level protocols. Because of its physical characteristics, and in line with the slogan "what you see is what you send", VLC is considered a secure communication method. In this work we focus on security aspects of VLC communication, starting from basic physical characteristics of the communication channel. We analyze the risks of signal jamming, data snooping and data modification. We also discuss MAC-level security mechanisms as defined in the IEEE 802.15.7 standard. This paper is an extension of work originally reported in Proceedings of the 13th IFAC and IEEE Conference on Programmable Devices and Embedded Systems — PDES 2015

    Defining Spatial Security Outage Probability for Exposure Region Based Beamforming

    Get PDF
    With increasing number of antennae in base stations, there is considerable interest in using beamfomining to improve physical layer security, by creating an `exposure region' that enhances the received signal quality for a legitimate user and reduces the possibility of leaking information to a randomly located passive eavesdropper. The paper formalises this concept by proposing a novel definition for the security level of such a legitimate transmission, called the `Spatial Secrecy Outage Probability' (SSOP). By performing a theoretical and numerical analysis, it is shown how the antenna array parameters can affect the SSOP and its analytic upper bound. Whilst this approach may be applied to any array type and any fading channel model, it is shown here how the security performance of a uniform linear array varies in a Rician fading channel by examining the analytic SSOP upper bound.Comment: Submitted to the IEEE Transactions on Wireless Communication

    Joint Optimization for Secure and Reliable Communications in Finite Blocklength Regime

    Full text link
    To realize ultra-reliable low latency communications with high spectral efficiency and security, we investigate a joint optimization problem for downlink communications with multiple users and eavesdroppers in the finite blocklength (FBL) regime. We formulate a multi-objective optimization problem to maximize a sum secrecy rate by developing a secure precoder and to minimize a maximum error probability and information leakage rate. The main challenges arise from the complicated multi-objective problem, non-tractable back-off factors from the FBL assumption, non-convexity and non-smoothness of the secrecy rate, and the intertwined optimization variables. To address these challenges, we adopt an alternating optimization approach by decomposing the problem into two phases: secure precoding design, and maximum error probability and information leakage rate minimization. In the first phase, we obtain a lower bound of the secrecy rate and derive a first-order Karush-Kuhn-Tucker (KKT) condition to identify local optimal solutions with respect to the precoders. Interpreting the condition as a generalized eigenvalue problem, we solve the problem by using a power iteration-based method. In the second phase, we adopt a weighted-sum approach and derive KKT conditions in terms of the error probabilities and leakage rates for given precoders. Simulations validate the proposed algorithm.Comment: 30 pages, 8 figure

    Context-Aware Security for 6G Wireless The Role of Physical Layer Security

    Full text link
    Sixth generation systems are expected to face new security challenges, while opening up new frontiers towards context awareness in the wireless edge. The workhorse behind this projected technological leap will be a whole new set of sensing capabilities predicted for 6G devices, in addition to the ability to achieve high precision localization. The combination of these enhanced traits can give rise to a new breed of context-aware security protocols, following the quality of security (QoSec) paradigm. In this framework, physical layer security solutions emerge as competitive candidates for low complexity, low-delay and low-footprint, adaptive, flexible and context aware security schemes, leveraging the physical layer of the communications in genuinely cross-layer protocols, for the first time.Comment: arXiv admin note: text overlap with arXiv:2011.0732

    Reconfigurable Intelligent Surface for Physical Layer Security in 6G-IoT: Designs, Issues, and Advances

    Full text link
    Sixth-generation (6G) networks pose substantial security risks because confidential information is transmitted over wireless channels with a broadcast nature, and various attack vectors emerge. Physical layer security (PLS) exploits the dynamic characteristics of wireless environments to provide secure communications, while reconfigurable intelligent surfaces (RISs) can facilitate PLS by controlling wireless transmissions. With RIS-aided PLS, a lightweight security solution can be designed for low-end Internet of Things (IoT) devices, depending on the design scenario and communication objective. This article discusses RIS-aided PLS designs for 6G-IoT networks against eavesdropping and jamming attacks. The theoretical background and literature review of RIS-aided PLS are discussed, and design solutions related to resource allocation, beamforming, artificial noise, and cooperative communication are presented. We provide simulation results to show the effectiveness of RIS in terms of PLS. In addition, we examine the research issues and possible solutions for RIS modeling, channel modeling and estimation, optimization, and machine learning. Finally, we discuss recent advances, including STAR-RIS and malicious RIS.Comment: Accepted for IEEE Internet of Things Journa

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays
    corecore