870 research outputs found

    Line-Interactive UPS for Microgrids

    Get PDF
    Line interactive Uninterruptable Power Supply (UPS) systems are good candidates for providing energy storage within a microgrid to help improve its reliability, economy and efficiency. In grid-connected mode, power can be imported from the grid by the UPS to charge its battery. Power can also be exported when required, e.g., when the tariffs are advantageous. In stand-alone mode, the UPS supplies local distributed loads in parallel with other sources. In this paper, a line interactive UPS and its control system are presented and discussed. Power flow is controlled using the frequency and voltage drooping technique to ensure seamless transfer between grid-connected and stand-alone parallel modes of operation. The drooping coefficients are chosen to limit the energy imported by the USP when re-connecting to the grid and to give good transient response. Experimental results of a microgrid consisting of two 60kW line interactive UPS systems are provided to validate the design

    Control Architecture for Parallel-Connected Inverters in Uninterruptible Power Systems

    Get PDF

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic

    Distributed energy resources in grid interactive AC microgrids

    Get PDF

    DC-Link Protection and Control in Modular Uninterruptible Power Supply

    Get PDF

    Advanced Control Architectures for Intelligent MicroGrids, Part I:Decentralized and Hierarchical Control

    Get PDF
    This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed

    Control of Transient Power during Unintentional Islanding of Microgrids

    Get PDF
    In inverter-based microgrids, the paralleled inverters need to work in grid-connected mode and stand-alone mode and to transfer seamlessly between the two modes. In grid-connected mode, the inverters control the amount of power injected into the grid. In stand-alone mode, however, the inverters control the island voltage while the output power is dictated by the load. This can be achieved using the droop control. Inverters can have different power set points during grid-connected mode, but in stand-alone mode, they all need their power set points to be adjusted according to their power ratings. However, during sudden unintentional islanding (due to loss of mains), transient power can flow from inverters with high power set points to inverters with low power set points, which can raise the dc-link voltage of the inverters causing them to shut down. This paper investigates the transient circulating power between paralleled inverters during unintentional islanding and proposes a controller to limit it. The controller monitors the dc-link voltage and adjusts the power set point in proportion to the rise in the voltage. A small-signal model of an islanded microgrid is developed and used to design the controller. Simulation and experimental results are presented to validate the design

    Output Impedance Diffusion into Lossy Power Lines

    Get PDF
    Output impedances are inherent elements of power sources in the electrical grids. In this paper, we give an answer to the following question: What is the effect of output impedances on the inductivity of the power network? To address this question, we propose a measure to evaluate the inductivity of a power grid, and we compute this measure for various types of output impedances. Following this computation, it turns out that network inductivity highly depends on the algebraic connectivity of the network. By exploiting the derived expressions of the proposed measure, one can tune the output impedances in order to enforce a desired level of inductivity on the power system. Furthermore, the results show that the more "connected" the network is, the more the output impedances diffuse into the network. Finally, using Kron reduction, we provide examples that demonstrate the utility and validity of the method
    corecore