550 research outputs found

    Derivation of new and existing discrete-time Kharitonov theorems based on discrete-time reactances

    Get PDF
    The author first uses a discrete-time reactance approach to give a second proof of existing discrete-time Kharitonov-type results (1979). He then uses the same reactance language to derive a new discrete-time Kharitonov-type theorem which, in some sense, is a very close analog to the continuous-time case. He also points out the relation between discrete-time reactances and the technique of line-spectral pairs (LSP) used in speech compression

    Ущільнення параметрів мовленнєвого сигналу на основі векторного квантування

    Get PDF
    У монографії розглянуто питання ущільнення мовленнєвих сигналів на основі векторного квантування параметрів сигналу. Вдосконалено методи ущільнення параметрів сигналу за рахунок структуризації кодових книг, дельта-ущільнення. Розроблено методику та програмні засоби для дослідження запропонованих методів ущільнення. Книга розрахована на науковців, аспірантів та інженерів, які займаються розробкою комп’ютерних систем ущільнення, передавання та зберігання мовленнєвих сигналів

    A Mandarin Voice Organizer Based on a Template-Matching Speech Recognizer

    Get PDF

    Comparison of CELP speech coder with a wavelet method

    Get PDF
    This thesis compares the speech quality of Code Excited Linear Predictor (CELP, Federal Standard 1016) speech coder with a new wavelet method to compress speech. The performances of both are compared by performing subjective listening tests. The test signals used are clean signals (i.e. with no background noise), speech signals with room noise and speech signals with artificial noise added. Results indicate that for clean signals and signals with predominantly voiced components the CELP standard performs better than the wavelet method but for signals with room noise the wavelet method performs much better than the CELP. For signals with artificial noise added, the results are mixed depending on the level of artificial noise added with CELP performing better for low level noise added signals and the wavelet method performing better for higher noise levels

    Audio Processing and Loudness Estimation Algorithms with iOS Simulations

    Get PDF
    abstract: The processing power and storage capacity of portable devices have improved considerably over the past decade. This has motivated the implementation of sophisticated audio and other signal processing algorithms on such mobile devices. Of particular interest in this thesis is audio/speech processing based on perceptual criteria. Specifically, estimation of parameters from human auditory models, such as auditory patterns and loudness, involves computationally intensive operations which can strain device resources. Hence, strategies for implementing computationally efficient human auditory models for loudness estimation have been studied in this thesis. Existing algorithms for reducing computations in auditory pattern and loudness estimation have been examined and improved algorithms have been proposed to overcome limitations of these methods. In addition, real-time applications such as perceptual loudness estimation and loudness equalization using auditory models have also been implemented. A software implementation of loudness estimation on iOS devices is also reported in this thesis. In addition to the loudness estimation algorithms and software, in this thesis project we also created new illustrations of speech and audio processing concepts for research and education. As a result, a new suite of speech/audio DSP functions was developed and integrated as part of the award-winning educational iOS App 'iJDSP." These functions are described in detail in this thesis. Several enhancements in the architecture of the application have also been introduced for providing the supporting framework for speech/audio processing. Frame-by-frame processing and visualization functionalities have been developed to facilitate speech/audio processing. In addition, facilities for easy sound recording, processing and audio rendering have also been developed to provide students, practitioners and researchers with an enriched DSP simulation tool. Simulations and assessments have been also developed for use in classes and training of practitioners and students.Dissertation/ThesisM.S. Electrical Engineering 201
    corecore