596 research outputs found

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Full text link
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate Gaussian distributed, the conventional principal component analysis (PCA) cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    A mixture transition distribution modeling for higher-order circular Markov processes

    Full text link
    The stationary higher-order Markov process for circular data is considered. We employ the mixture transition distribution (MTD) model to express the transition density of the process on the circle. The underlying circular transition distribution is based on Wehrly and Johnson's bivariate joint circular models. The structures of the circular autocorrelation function together with the circular partial autocorrelation function are found to be similar to those of the autocorrelation and partial autocorrelation functions of the real-valued autoregressive process when the underlying binding density has zero sine moments. The validity of the model is assessed by applying it to some Monte Carlo simulations and real directional data

    Circular Data in Political Science and How to Handle It

    Get PDF
    There has been no attention to circular (purely cyclical) data in political science research. We show that such data exist and are mishandled by models that do not take into account the inherently recycling nature of some phenomenon. Clock and calendar effects are the obvious cases, but directional data are observed as well. We describe a standard maximum likelihood regression modeling framework based on the von Mises distribution, then develop a general Bayesian regression procedure for the first time, providing an easy-to-use Metropolis-Hastings sampler for this approach. Applications include a chronographic analysis of U.S. domestic terrorism and directional party preferences in a two-dimensional ideological space for German Bundestag elections. The results demonstrate the importance of circular models to handle periodic and directional data in political scienc
    • …
    corecore