6,604 research outputs found

    Hypergraph Learning with Line Expansion

    Full text link
    Previous hypergraph expansions are solely carried out on either vertex level or hyperedge level, thereby missing the symmetric nature of data co-occurrence, and resulting in information loss. To address the problem, this paper treats vertices and hyperedges equally and proposes a new hypergraph formulation named the \emph{line expansion (LE)} for hypergraphs learning. The new expansion bijectively induces a homogeneous structure from the hypergraph by treating vertex-hyperedge pairs as "line nodes". By reducing the hypergraph to a simple graph, the proposed \emph{line expansion} makes existing graph learning algorithms compatible with the higher-order structure and has been proven as a unifying framework for various hypergraph expansions. We evaluate the proposed line expansion on five hypergraph datasets, the results show that our method beats SOTA baselines by a significant margin

    The Zeta Function of a Hypergraph

    Get PDF
    We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto's factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d,r)(d,r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Sol\'e. Finally, we give an example to show how the generalized zeta function can be applied to graphs to distinguish non-isomorphic graphs with the same Ihara-Selberg zeta function.Comment: 24 pages, 6 figure

    Strong Products of Hypergraphs: Unique Prime Factorization Theorems and Algorithms

    Full text link
    It is well-known that all finite connected graphs have a unique prime factor decomposition (PFD) with respect to the strong graph product which can be computed in polynomial time. Essential for the PFD computation is the construction of the so-called Cartesian skeleton of the graphs under investigation. In this contribution, we show that every connected thin hypergraph H has a unique prime factorization with respect to the normal and strong (hypergraph) product. Both products coincide with the usual strong graph product whenever H is a graph. We introduce the notion of the Cartesian skeleton of hypergraphs as a natural generalization of the Cartesian skeleton of graphs and prove that it is uniquely defined for thin hypergraphs. Moreover, we show that the Cartesian skeleton of hypergraphs can be determined in O(|E|^2) time and that the PFD can be computed in O(|V|^2|E|) time, for hypergraphs H = (V,E) with bounded degree and bounded rank
    • …
    corecore