862 research outputs found

    Ship Wake Detection in SAR Images via Sparse Regularization

    Get PDF
    In order to analyse synthetic aperture radar (SAR) images of the sea surface, ship wake detection is essential for extracting information on the wake generating vessels. One possibility is to assume a linear model for wakes, in which case detection approaches are based on transforms such as Radon and Hough. These express the bright (dark) lines as peak (trough) points in the transform domain. In this paper, ship wake detection is posed as an inverse problem, which the associated cost function including a sparsity enforcing penalty, i.e. the generalized minimax concave (GMC) function. Despite being a non-convex regularizer, the GMC penalty enforces the overall cost function to be convex. The proposed solution is based on a Bayesian formulation, whereby the point estimates are recovered using maximum a posteriori (MAP) estimation. To quantify the performance of the proposed method, various types of SAR images are used, corresponding to TerraSAR-X, COSMO-SkyMed, Sentinel-1, and ALOS2. The performance of various priors in solving the proposed inverse problem is first studied by investigating the GMC along with the L1, Lp, nuclear and total variation (TV) norms. We show that the GMC achieves the best results and we subsequently study the merits of the corresponding method in comparison to two state-of-the-art approaches for ship wake detection. The results show that our proposed technique offers the best performance by achieving 80% success rate.Comment: 18 page

    Circulant temporal encoding for video retrieval and temporal alignment

    Get PDF
    We address the problem of specific video event retrieval. Given a query video of a specific event, e.g., a concert of Madonna, the goal is to retrieve other videos of the same event that temporally overlap with the query. Our approach encodes the frame descriptors of a video to jointly represent their appearance and temporal order. It exploits the properties of circulant matrices to efficiently compare the videos in the frequency domain. This offers a significant gain in complexity and accurately localizes the matching parts of videos. The descriptors can be compressed in the frequency domain with a product quantizer adapted to complex numbers. In this case, video retrieval is performed without decompressing the descriptors. We also consider the temporal alignment of a set of videos. We exploit the matching confidence and an estimate of the temporal offset computed for all pairs of videos by our retrieval approach. Our robust algorithm aligns the videos on a global timeline by maximizing the set of temporally consistent matches. The global temporal alignment enables synchronous playback of the videos of a given scene

    Development of bioinformatics tools to track cancer cell invasion using 3D in vitro invasion assays

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    A review of hough transform and line segment detection approaches

    Get PDF
    In a wide range of image processing and computer vision problems, line segment detection is one of the most critical challenges. For more than three decades researchers have contributed to build more robust and accurate algorithms with faster performance. In this paper we review the main approaches and in particular the Hough transform and its extensions, which are among the most well-known techniques for the detection of straight lines in a digital image. This paper is based on extensive practical research and is organised into two main parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and summarised in a table

    A review of hough transform and line segment detection approaches

    Get PDF
    In a wide range of image processing and computer vision problems, line segment detection is one of the most critical challenges. For more than three decades researchers have contributed to build more robust and accurate algorithms with faster performance. In this paper we review the main approaches and in particular the Hough transform and its extensions, which are among the most well-known techniques for the detection of straight lines in a digital image. This paper is based on extensive practical research and is organised into two main parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and summarised in a table

    Hierarchical Object Parsing from Structured Noisy Point Clouds

    Full text link
    Object parsing and segmentation from point clouds are challenging tasks because the relevant data is available only as thin structures along object boundaries or other features, and is corrupted by large amounts of noise. To handle this kind of data, flexible shape models are desired that can accurately follow the object boundaries. Popular models such as Active Shape and Active Appearance models lack the necessary flexibility for this task, while recent approaches such as the Recursive Compositional Models make model simplifications in order to obtain computational guarantees. This paper investigates a hierarchical Bayesian model of shape and appearance in a generative setting. The input data is explained by an object parsing layer, which is a deformation of a hidden PCA shape model with Gaussian prior. The paper also introduces a novel efficient inference algorithm that uses informed data-driven proposals to initialize local searches for the hidden variables. Applied to the problem of object parsing from structured point clouds such as edge detection images, the proposed approach obtains state of the art parsing errors on two standard datasets without using any intensity information.Comment: 13 pages, 16 figure
    • …
    corecore