139 research outputs found

    Large-Scale Newscast Computing on the Internet

    Get PDF

    Simulating The Impact of Emissions Control on Economic Productivity Using Particle Systems and Puff Dispersion Model

    Get PDF
    A simulation platform is developed for quantifying the change in productivity of an economy under passive and active emission control mechanisms. The program uses object-oriented programming to code a collection of objects resembling typical stakeholders in an economy. These objects include firms, markets, transportation hubs, and boids which are distributed over a 2D surface. Firms are connected using a modified Prim’s Minimum spanning tree algorithm, followed by implementation of an all-pair shortest path Floyd Warshall algorithm for navigation purposes. Firms use a non-linear production function for transformation of land, labor, and capital inputs to finished product. A GA-Vehicle Routing Problem with multiple pickups and drop-offs is implemented for efficient delivery of commodities across multiple nodes in the economy. Boids are autonomous agents which perform several functions in the economy including labor, consumption, renting, saving, and investing. Each boid is programmed with several microeconomic functions including intertemporal choice models, Hicksian and Marshallian demand function, and labor-leisure model. The simulation uses a Puff Dispersion model to simulate the advection and diffusion of emissions from point and mobile sources in the economy. A dose-response function is implemented to quantify depreciation of a Boid’s health upon contact with these emissions. The impact of emissions control on productivity and air quality is examined through a series of passive and active emission control scenarios. Passive control examines the impact of various shutdown times on economic productivity and rate of emissions exposure experienced by boids. The active control strategy examines the effects of acceptable levels of emissions exposure on economic productivity. The key findings on 7 different scenarios of passive and active emissions controls indicate that rate of productivity and consumption in an economy declines with increased scrutiny of emissions from point sources. In terms of exposure rates, the point sources may not be the primary source of average exposure rates, however they significantly impact the maximum exposure rate experienced by a boid. Tightening of emissions control also negatively impacts the transportation sector by reducing the asset utilization rate as well as reducing the total volume of goods transported across the economy

    Signaling and Reciprocity:Robust Decentralized Information Flows in Social, Communication, and Computer Networks

    Get PDF
    Complex networks exist for a number of purposes. The neural, metabolic and food networks ensure our survival, while the social, economic, transportation and communication networks allow us to prosper. Independently of the purposes and particularities of the physical embodiment of the networks, one of their fundamental functions is the delivery of information from one part of the network to another. Gossip and diseases diffuse in the social networks, electrochemical signals propagate in the neural networks and data packets travel in the Internet. Engineering networks for robust information flows is a challenging task. First, the mechanism through which the network forms and changes its topology needs to be defined. Second, within a given topology, the information must be routed to the appropriate recipients. Third, both the network formation and the routing mechanisms need to be robust against a wide spectrum of failures and adversaries. Fourth, the network formation, routing and failure recovery must operate under the resource constraints, either intrinsic or extrinsic to the network. Finally, the autonomously operating parts of the network must be incentivized to contribute their resources to facilitate the information flows. This thesis tackles the above challenges within the context of several types of networks: 1) peer-to-peer overlays – computers interconnected over the Internet to form an overlay in which participants provide various services to one another, 2) mobile ad-hoc networks – mobile nodes distributed in physical space communicating wirelessly with the goal of delivering data from one part of the network to another, 3) file-sharing networks – networks whose participants interconnect over the Internet to exchange files, 4) social networks – humans disseminating and consuming information through the network of social relationships. The thesis makes several contributions. Firstly, we propose a general algorithm, which given a set of nodes embedded in an arbitrary metric space, interconnects them into a network that efficiently routes information. We apply the algorithm to the peer-to-peer overlays and experimentally demonstrate its high performance, scalability as well as resilience to continuous peer arrivals and departures. We then shift our focus to the problem of the reliability of routing in the peer-to-peer overlays. Each overlay peer has limited resources and when they are exhausted this ultimately leads to delayed or lost overlay messages. All the solutions addressing this problem rely on message redundancy, which significantly increases the resource costs of fault-tolerance. We propose a bandwidth-efficient single-path Forward Feedback Protocol (FFP) for overlay message routing in which successfully delivered messages are followed by a feedback signal to reinforce the routing paths. Internet testbed evaluation shows that FFP uses 2-5 times less network bandwidth than the existing protocols relying on message redundancy, while achieving comparable fault-tolerance levels under a variety of failure scenarios. While the Forward Feedback Protocol is robust to message loss and delays, it is vulnerable to malicious message injection. We address this and other security problems by proposing Castor, a variant of FFP for mobile ad-hoc networks (MANETs). In Castor, we use the same general mechanism as in FFP; each time a message is routed, the routing path is either enforced or weakened by the feedback signal depending on whether the routing succeeded or not. However, unlike FFP, Castor employs cryptographic mechanisms for ensuring the integrity and authenticity of the messages. We compare Castor to four other MANET routing protocols. Despite Castor's simplicity, it achieves up to 40% higher packet delivery rates than the other protocols and recovers at least twice as fast as the other protocols in a wide range of attacks and failure scenarios. Both of our protocols, FFP and Castor, rely on simple signaling to improve the routing robustness in peer-to-peer and mobile ad-hoc networks. Given the success of the signaling mechanism in shaping the information flows in these two types of networks, we examine if signaling plays a similar crucial role in the on-line social networks. We characterize the propagation of URLs in the social network of Twitter. The data analysis uncovers several statistical regularities in the user activity, the social graph, the structure of the URL cascades as well as the communication and signaling dynamics. Based on these results, we propose a propagation model that accurately predicts which users are likely to mention which URLs. We outline a number of applications where the social network information flow modelling would be crucial: content ranking and filtering, viral marketing and spam detection. Finally, we consider the problem of freeriding in peer-to-peer file-sharing applications, when users can download data from others, but never reciprocate by uploading. To address the problem, we propose a variant of the BitTorrent system in which two peers are only allowed to connect if their owners know one another in the real world. When the users know which other users their BitTorrent client connects to, they are more likely to cooperate. The social network becomes the content distribution network and the freeriding problem is solved by leveraging the social norms and reciprocity to stabilize cooperation rather than relying on technological means. Our extensive simulation shows that the social network topology is an efficient and scalable content distribution medium, while at the same time provides robustness to freeriding

    Routing on the Channel Dependency Graph:: A New Approach to Deadlock-Free, Destination-Based, High-Performance Routing for Lossless Interconnection Networks

    Get PDF
    In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions

    Topology Control Multi-Objective Optimisation in Wireless Sensor Networks: Connectivity-Based Range Assignment and Node Deployment

    Get PDF
    The distinguishing characteristic that sets topology control apart from other methods, whose motivation is to achieve effects of energy minimisation and an increased network capacity, is its network-wide perspective. In other words, local choices made at the node-level always have the goal in mind of achieving a certain global, network-wide property, while not excluding the possibility for consideration of more localised factors. As such, our approach is marked by being a centralised computation of the available location-based data and its reduction to a set of non-homogeneous transmitting range assignments, which elicit a certain network-wide property constituted as a whole, namely, strong connectedness and/or biconnectedness. As a means to effect, we propose a variety of GA which by design is multi-morphic, where dependent upon model parameters that can be dynamically set by the user, the algorithm, acting accordingly upon either single or multiple objective functions in response. In either case, leveraging the unique faculty of GAs for finding multiple optimal solutions in a single pass. Wherefore it is up to the designer to select the singular solution which best meets requirements. By means of simulation, we endeavour to establish its relative performance against an optimisation typifying a standard topology control technique in the literature in terms of the proportion of time the network exhibited the property of strong connectedness. As to which, an analysis of the results indicates that such is highly sensitive to factors of: the effective maximum transmitting range, node density, and mobility scenario under observation. We derive an estimate of the optimal constitution thereof taking into account the specific conditions within the domain of application in that of a WSN, thereby concluding that only GA optimising for the biconnected components in a network achieves the stated objective of a sustained connected status throughout the duration.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Computer Science & Technology Series : XVI Argentine Congress of Computer Science - Selected papers

    Get PDF
    CACIC’10 was the sixteenth Congress in the CACIC series. It was organized by the School of Computer Science of the University of Moron. The Congress included 10 Workshops with 104 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. (http://www.cacic2010.edu.ar/). CACIC 2010 was organized following the traditional Congress format, with 10 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 195 submissions. An average of 2.6 review reports were collected for each paper, for a grand total of 507 review reports that involved about 300 different reviewers. A total of 104 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Interpretive structural model of key performance indicators for sustainable manufacturing evaluation in automotive companies

    Get PDF
    This paper aims to analyze the interrelationships among the key performance indicators of sustainable manufacturing evaluation in automotive companies. The initial key performance indicators have been identified and derived from literature and were then validated by industry survey. Interpretive structural modeling (ISM) methodology is applied to develop a hierarchical structure of the key performance indicators in three levels. Of nine indicators, there are five unstable indicators which have both high driver and dependence power, thus requiring further attention. It is believed that the model can provide a better insight for automotive managers in assessing their sustainable manufacturing performance

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    • …
    corecore