138 research outputs found

    Probability bounds on the peak intensity of optical ultrashort light pulse CDMA

    Get PDF
    Includes bibliographical references (p. 14).Caption title.Research supported by the NSF. NSF-ECS-8519058 Research supported by the ARO. DAAL03-86-K-0171 Research supported by Bellcore.by Emmanouel A. Varvarigos and Jawad A. Salehi

    An access optimization approach for FFH-OCDMA system’s fiber bragg gratings encoder

    Get PDF
    Abstract: This paper suggests an adaptive 2-D Optical CDMA coding system based on one-coincidence frequency hopping (OCFH) code combined with an optical orthogonal code (OOC) in the format OCFH/OOC, suitable for the fast frequency hopping optical code division multiple access (FFH-OCDMA) channel, encoded by the Bragg gratings encoder with an aim to optimize the access network in terms of number of users and transmitted power. As wavelength hopping (WH) code, the OCFH code is herein adapted to the constraints of the encoder: the Bragg gratings chain put on the optical fiber..

    Dark signalling and code division multiple access in an optical fibre LAN with a bus topology

    Get PDF
    This thesis describes an optical fibre network that uses a bus topology and Code Division Multiple Access (CDMA). Various potential configurations are analysed and compared and it is shown that a serious limitation of optical CDMA schemes using incoherent correlators is the effect of optical beating due to the presence of multiple incoherent optical signals at the receiver photodiode. The network proposed and analysed in this thesis avoids beating between multiple optical fields because it only uses a single, shared, optical source. It does this through the SLIM (Single Light-source with In-line Modulation) configuration in which there is a continuously-operating light source at the head-end of a folded bus, and modulators at the nodes to impose signals on the optical field in the form of pulses of darkness which propagate along the otherwise continuously bright bus. Optical CDMA can use optical-fibre delay-line correlators as matched filters, and these may be operated either coherently or incoherently.Coherent operation is significantly more complex than incoherent operation, but incoherent correlators introduce further beating even in a SLIM network. A new design of optical delay-line correlator, the hybrid correlator, is therefore proposed, analysed and demonstrated. It is shown to eliminate beating. A model of a complete network predicts that a SLIMbus using optical CDMA with hybrid correlators can be operated at TeraBaud rates with the number of simultaneous users limited by multiple access interference (MAI), determined only by the combinatorics of the code set

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Optical code division multiple access systems in AlGaInAs/InP

    Get PDF
    The rise of photonic integration makes optical code division multiple access (OCDMA) worth revisiting due to its promising role in future all-optical networks. OCDMA has the potential to exploit the surplus bandwidth of optical fibres and to carry over to the optical domain the benefits seen CDMA radio communication systems, such as the effective sharing of the spectrum for multiple network subscribers, and resistance to jamming and eavesdropping. One of the major requirements for the deployment of OCDMA in networks is integration. This thesis presents a research study of integrated OCDMA systems using the AlGaInAs/InP semiconductor material system. This material is considered due to its useful intrinsic properties such as thermal stability, strong electron confinement, and low threshold, making it suitable for fabricating optoelectronic devices. Two bespoke OCDMA systems are considered for integration: coherent temporal phase coding (TPC), and incoherent wavelength-hopping time-spreading (WHTS) OCDMA systems. TPC systems are excellent for high speed communications due to their static en/decoding enabling features. In this research, a 2×2 asymmetric Mach Zehnder interferometer (AMZI) is used to generate a 2-bit phase code, allowing multiplexing for up to four users. A semiconductor mode-locked ring laser is also embedded in the circuit, and using a synchronous mode-locking method, adequate signal en/decoding is achieved. WHTS systems on the other hand fully exploit the spectral and temporal space available in networks by assigning each user with a unique wavelength-time hop sequence for en/decoding data signals. Here, a mode-locked laser array is used with intracavity distributed Bragg reflectors (DBRs) for spectrally tuning each laser, and a 4:1 multimode interference coupler is used to combine the laser signals into a single channel for amplification, modulation and transmission. The integrated system is fully characterised and synchronisation experiments are performed to show the potential for its use in high speed multi-user networks. Mode-locked lasers play an important role in many OCDMA implementations due to their wide spectrum and discrete temporal properties, which can be easily exploited during data en/decoding. Various mode-locked laser devices have been studied during this research with additional embedded components such as intracavity DBRs and phase controllers for precise tuning of the wavelength and pulse repetition frequency. However, the noisy nature of passively operating mode-locked lasers make them prone to high jitter, which can result in high bit error rates. Synchronisation schemes are thereby explored in order to temporally stabilise the pulse oscillations to make them suitable for use in long haul transmission systems. This includes synchronous and hybrid mode-locking, as well as a passive technique using an optical fibre loop to provide phase feedback, which is shown to promote ultralow RF linewidths in mode-locked lasers

    A Study on the Dynamic Manipulation of Structured Light Using Orbital Angular Momentum for Wireless Underwater Links

    Get PDF
    In this work, the dynamic generation of structured light modes was demonstrated using coherent, co-aligned beams carrying orbital angular momentum (CCOAM). These modes are created using sources with blue/green wavelengths to study the effects of propagation and applications underwater maritime environments. Three techniques are discussed and are compared to simulation using a Rayleigh-Sommerfeld propagation kernel: concentric phase plates, Mach-Zehnder Interferometry, and the HOBBIT (Higher Order Bessel Beams Integrated in Time). These three systems are used to examine the modal integrity, controllability, and unique applications. Structured CCOAM modes were first demonstrated using a 450 nm source and concentric phase plates and were propagated through 3 meters of turbid underwater environments. Beam coherence was measured using image registration, and the wavefronts were found to maintain their structure despite propagation through extreme turbidity. In addition, the source was amplitude modulated to verify that the mode structure can carry an amplitude modulation signal. Next, an interferometry approach is used so that the two interfering modes can be controlled separately. The relative phase is controlled between the two interfering modes by manipulating the optical path length that each mode travels using an electro-optic phase modulator. Phase modulation allows for precise yet limited control of the wavefront and structure. Two setups were examined, a fiber-to-free-space Mach-Zehnder interferometer, and a HOBBIT system with two inputs. Phase only control was demonstrated using sinusoidal modulation and an orthogonal frequency division multiplexing (OFDM) signal applied to the phase modulator. The modulated signals were successfully transmitted 3 and 6 meters through turbid water. Phase only modulation allowed for the transmission of a constant-amplitude signal, which provides nonlinear manipulation of the signal, such as amplification and harmonic generation, which are both crucial in creating high-power signals in the visible regime. The interferometry setups are very sensitive and a phase drift was found to occur due to temperature fluctuations and small movements of optical fiber in the setup, so a preliminary phase-lock loop was designed and tested to eliminate the phase drift. Without applied modulation, a RMS phase error of less than λ/30 was measured. Lastly an acousto-optic deflector (AOD) was added to the HOBBIT setup, which adds mode tunability in addition to amplitude and phase control. The traveling acoustic wave also induces a frequency shift in the optical signal producing a continuous modulation of the output CCOAM mode. This is demonstrated by using a pulsed 450 nm diode to strobe the signal. Operation in pulsed mode enables the system to perform a self-referencing wavefront recovery from which the total OAM was extracted

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Novel linear and nonlinear optical signal processing for ultra-high bandwidth communications

    Get PDF
    The thesis is articulated around the theme of ultra-wide bandwidth single channel signals. It focuses on the two main topics of transmission and processing of information by techniques compatible with high baudrates. The processing schemes introduced combine new linear and nonlinear optical platforms such as Fourier-domain programmable optical processors and chalcogenide chip waveguides, as well as the concept of neural network. Transmission of data is considered in the context of medium distance links of Optical Time Division Multiplexed (OTDM) data subject to environmental fluctuations. We experimentally demonstrate simultaneous compensation of differential group delay and multiple orders of dispersion at symbol rates of 640 Gbaud and 1.28 Tbaud. Signal processing at high bandwidth is envisaged both in the case of elementary post-transmission analog error mitigation and in the broader field of optical computing for high level operations (“optical processor”). A key innovation is the introduction of a novel four-wave mixing scheme implementing a dot-product operation between wavelength multiplexed channels. In particular, it is demonstrated for low-latency hash-key based all-optical error detection in links encoded with advanced modulation formats. Finally, the work presents groundbreaking concepts for compact implementation of an optical neural network as a programmable multi-purpose processor. The experimental architecture can implement neural networks with several nodes on a single optical nonlinear transfer function implementing functions such as analog-to-digital conversion. The particularity of the thesis is the new approaches to optical signal processing that potentially enable high level operations using simple optical hardware and limited cascading of components

    Fiber-optic code division multiple access : multi-class optical orthogonal codes, optical power control, and polarization encoding

    Get PDF
    Ever since the mid- 1980s when the single-mode fiber-optic media were believed to become the main highways of future telecommunications networks for transporting high-volume high-quality multipurpose information, the need for all-optical multi-access networking became important. An all-optical multi-access network is a collection of multiple nodes where the interconnection among various nodes is via single- or multi-mode fiber optics and for which they perform all their essential signal processing requirements such as switching, add-drop, multiplexing/demultiplexing and amplification in the optical domain. Optical CDMA networking is one possible technique that allows multiple users in local area networks to access the same fiber channel asynchronously with no delay or scheduling. Optical CDMA networks are not without their own problems. Search for codes suitable to the optical domain is one of the important topics addressed in the literature on optical CDMA. Existing codes developed in the late 80's are limited to single class traffic or can support multiclass traffic but with restrictions on code lengths and weights. Also the number of generated codes is severely limited due to orthogonality issues. In this thesis, we pay particular attention to propose new codes that can support multiclass traffic with arbitrary code weights and lengths. Therefore, data sources with varying traffic demands can be accommodated by optical CDMA networks using the proposed codes. We also present a simple generation technique for the proposed multiclass codes and analyze their performance. The number of users supported by the proposed multiclass codes will be limited since it is an extension of existing code designs with such limitation. We then propose the use of polarization dimension in order to double the number of supported users. On the other hand, incoherent optical CDMA systems are considered as positive systems meaning that only unipolar codes can be considered for such systems. Therefore, multiple access interference will be quite high in optical CDMA due to the nature of incoherent power detection. Reducing the effect of the interference on the performance of optical CDMA is an important topic. We propose the use of power control to decrease the effects of interference in optical star networks in which users' fiber lengths and data rates are not equal. We consider the case of optically amplified network with amplifier noise as the main source. We then elaborate by considering the nonlinearity in the photodetection process and propose the use of an iterative algorithm to find the solution of the non-linear optical power control problem. Finally, we propose an optical CDMA system based on polarization encoding. Since the encoding is performed in the spatial domain, therefore, positive and negative levels can be realized. This approach leads to increasing the number of supported users of optical CDMA by the use of known codes, such as Gold and Hadamard codes, with enhanced performance.reviewe
    corecore