6,300 research outputs found

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556

    Limits of Preprocessing

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning. We show that, subject to a complexity theoretic assumption, none of the considered problems can be reduced by polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, such as induced width or backdoor size. Our results provide a firm theoretical boundary for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: This is a slightly longer version of a paper that appeared in the proceedings of AAAI 201

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    Decision-theoretic control of EUVE telescope scheduling

    Get PDF
    This paper describes a decision theoretic scheduler (DTS) designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems and using probabilistic inference to aggregate this information in light of the features of a given problem. The Bayesian Problem-Solver (BPS) introduced a similar approach to solving single agent and adversarial graph search patterns yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems

    Verifying UML/OCL operation contracts

    Get PDF
    In current model-driven development approaches, software models are the primary artifacts of the development process. Therefore, assessment of their correctness is a key issue to ensure the quality of the final application. Research on model consistency has focused mostly on the models' static aspects. Instead, this paper addresses the verification of their dynamic aspects, expressed as a set of operations defined by means of pre/postcondition contracts. This paper presents an automatic method based on Constraint Programming to verify UML models extended with OCL constraints and operation contracts. In our approach, both static and dynamic aspects are translated into a Constraint Satisfaction Problem. Then, compliance of the operations with respect to several correctness properties such as operation executability or determinism are formally verified

    A Unified View of Graph Regularity via Matrix Decompositions

    Full text link
    We prove algorithmic weak and \Szemeredi{} regularity lemmas for several classes of sparse graphs in the literature, for which only weak regularity lemmas were previously known. These include core-dense graphs, low threshold rank graphs, and (a version of) LpL^p upper regular graphs. More precisely, we define \emph{cut pseudorandom graphs}, we prove our regularity lemmas for these graphs, and then we show that cut pseudorandomness captures all of the above graph classes as special cases. The core of our approach is an abstracted matrix decomposition, roughly following Frieze and Kannan [Combinatorica '99] and \Lovasz{} and Szegedy [Geom.\ Func.\ Anal.\ '07], which can be computed by a simple algorithm by Charikar [AAC0 '00]. This gives rise to the class of cut pseudorandom graphs, and using work of Oveis Gharan and Trevisan [TOC '15], it also implies new PTASes for MAX-CUT, MAX-BISECTION, MIN-BISECTION for a significantly expanded class of input graphs. (It is NP Hard to get PTASes for these graphs in general.
    • …
    corecore