80 research outputs found

    A Flux-Differencing Formula for Split-Form Summation By Parts Discretizations of Non-Conservative Systems: Applications to Subcell Limiting for magneto-hydrodynamics

    Full text link
    In this paper, we show that diagonal-norm summation by parts (SBP) discretizations of general non-conservative systems of hyperbolic balance laws can be rewritten as a finite-volume-type formula, also known as flux-differencing formula, if the non-conservative terms can be written as the product of a local and a symmetric contribution. Furthermore, we show that the existence of a flux-differencing formula enables the use of recent subcell limiting strategies to improve the robustness of the high-order discretizations. To demonstrate the utility of the novel flux-differencing formula, we construct hybrid schemes that combine high-order SBP methods (the discontinuous Galerkin spectral element method and a high-order SBP finite difference method) with a compatible low-order finite volume (FV) scheme at the subcell level. We apply the hybrid schemes to solve challenging magnetohydrodynamics (MHD) problems featuring strong shocks

    A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations

    Full text link
    A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented. The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock and existing numerical solutions to the GEM challenge magnetic reconnection problem. The algorithm can be generalized to arbitrary geometries and three dimensions. An approach to maintaining small gauge errors based on error propagation is suggested.Comment: 40 pages, 18 figures

    Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

    Full text link
    This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas

    An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing

    Get PDF
    The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element(DGSEM)discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment. Hennemann et al. ["A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations". JCP, 2020] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability. We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM (Geospace Environmental Modeling) reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter's magnetic field with the plasma torus generated by the moon Io

    High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs

    Get PDF
    Partial differential equations constrained by involutions provide the highest fidelity mathematical models for a large number of complex physical systems of fundamental interest in critical scientific and technological disciplines. The applications described by these models include electromagnetics, continuum dynamics of solid media, and general relativity. This workshop brought together pure and applied mathematicians to discuss current research that cuts across these various disciplines’ boundaries. The presented material illuminated fundamental issues as well as evolving theoretical and algorithmic approaches for PDEs with involutions. The scope of the material covered was broad, and the discussions conducted during the workshop were lively and far-reaching

    Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems

    Get PDF
    The adaptive multistep linear and nonlinear filters for multiscale shock/turbulence gas dynamics and magnetohydrodynamics (MHD) flows of the authors are extended to include compact high order central differencing as the spatial base scheme. The adaptive mechanism makes used of multiresolution wavelet decomposition of the computed flow data as sensors for numerical dissipative control. The objective is to expand the work initiated in [Yee HC, Sjo¨green B. Nonlinear filtering in compact high order schemes. In: Proceedings of the 19th ICNSP and 7th APPTC conference; 2005; J Plasma Phys 2006;72:833–36] and compare the performance of adaptive multistep filtering in compact high order schemes with adaptive filtering in standard central (non-compact) schemes for multiscale problems containing shock waves
    corecore