56 research outputs found

    Degrees of Freedom of Time Correlated MISO Broadcast Channel with Delayed CSIT

    Full text link
    We consider the time correlated multiple-input single-output (MISO) broadcast channel where the transmitter has imperfect knowledge on the current channel state, in addition to delayed channel state information. By representing the quality of the current channel state information as P^-{\alpha} for the signal-to-noise ratio P and some constant {\alpha} \geq 0, we characterize the optimal degree of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.Comment: revised and final version, to appear in IEEE transactions on Information Theor

    Limited Feedback Techniques in Multiple Antenna Wireless Communication Systems

    No full text
    Multiple antenna systems provide spatial multiplexing and diversity benefits.These systems also offer beamforming and interference mitigation capabilities in single-user (SU) and multi-user (MU) scenarios, respectively. Although diversity can be achieved without channel state information (CSI) at the transmitter using space-time codes, the knowledge of instantaneous CSI at the transmitter is essential to the above mentioned gains. In frequency division duplexing (FDD) systems, limited feedback techniques are employed to obtain CSI at the transmitter from the receiver using a low-rate link. As a consequence, CSI acquired by the transmitter in such manner have errors due to channel estimation and codebook quantization at the receiver, resulting in performance degradation of multi-antenna systems. In this thesis, we examine CSI inaccuracies due to codebook quantization errors and investigate several other aspects of limited feedback in SU, MU and multicell wireless communication systems with various channel models. For SU multiple-input multiple-output (MIMO) systems, we examine the capacity loss using standard codebooks. In particular, we consider single-stream and two-stream MIMO transmissions and derive capacity loss expressions in terms of minimum squared chordal distance for various MIMO receivers. Through simulations, we investigate the impact of codebook quantization errors on the capacity performance in uncorrelated Rayleigh, spatially correlated Rayleigh and standardized MIMO channels. This work motivates the need of effective codebook design to reduce the codebook quantization errors in correlated channels. Subsequently, we explore the improvements in the design of codebooks in temporally and spatially correlated channels for MU multiple-input single-output (MISO) systems, by employing scaling and rotation techniques. These codebooks quantize instantaneous channel direction information (CDI) and are referred as differential codebooks in the thesis. We also propose various adaptive scaling techniques for differential codebooks where packing density of codewords in the differential codebook are altered according to the channel condition, in order to reduce the quantization errors. The proposed differential codebooks improve the spectral efficiency of the system by minimizing the codebook quantization errors in spatially and temporally correlated channels. Later, we broaden the scope to massive MISO systems and propose trellis coded quantization (TCQ) schemes to quantize CDI. Unlike conventional codebook approach, the TCQ scheme does not require exhaustive search to select an appropriate codeword, thus reducing computational complexity and memory requirement at the receiver. The proposed TCQ schemes yield significant performance improvements compared to the existing TCQ based limited feedback schemes in both temporally and spatially correlated channels. Finally, we investigate interference coordination for multicell MU MISO systems using regularized zero-forcing (RZF) precoding. We consider random vector quantization (RVQ) codebooks and uncorrelated Rayleigh channels. We derive expected SINR approximations for perfect CDI and RVQ codebook-based CDI. We also propose an adaptive bit allocation scheme which aims to minimize the network interference and moreover, improves the spectral efficiency compared to equal bit allocation and coordinated zero-forcing (ZF) based adaptive bit allocation schemes

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore