800 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Learning with Single View Co-training and Marginalized Dropout

    Get PDF
    The generalization properties of most existing machine learning techniques are predicated on the assumptions that 1) a sufficiently large quantity of training data is available; 2) the training and testing data come from some common distribution. Although these assumptions are often met in practice, there are also many scenarios in which training data from the relevant distribution is insufficient. We focus on making use of additional data, which is readily available or can be obtained easily but comes from a different distribution than the testing data, to aid learning. We present five learning scenarios, depending on how the distribution we used to sample the additional training data differs from the testing distribution: 1) learning with weak supervision; 2) domain adaptation; 3) learning from multiple domains; 4) learning from corrupted data; 5) learning with partial supervision. We introduce two strategies and manifest them in five ways to cope with the difference between the training and testing distribution. The first strategy, which gives rise to Pseudo Multi-view Co-training: PMC) and Co-training for Domain Adaptation: CODA), is inspired by the co-training algorithm for multi-view data. PMC generalizes co-training to the more common single view data and allows us to learn from weakly labeled data retrieved free from the web. CODA integrates PMC with an another feature selection component to address the feature incompatibility between domains for domain adaptation. PMC and CODA are evaluated on a variety of real datasets, and both yield record performance. The second strategy marginalized dropout leads to marginalized Stacked Denoising Autoencoders: mSDA), Marginalized Corrupted Features: MCF) and FastTag: FastTag). mSDA diminishes the difference between distributions associated with different domains by learning a new representation through marginalized corruption and reconstruciton. MCF learns from a known distribution which is created by corrupting a small set of training data, and improves robustness of learned classifiers by training on ``infinitely\u27\u27 many data sampled from the distribution. FastTag applies marginalized dropout to the output of partially labeled data to recover missing labels for multi-label tasks. These three algorithms not only achieve the state-of-art performance in various tasks, but also deliver orders of magnitude speed up at training and testing comparing to competing algorithms

    A Stacked Multi-Granularity Convolution Denoising Auto-Encoder

    Get PDF
    With the development of big data, artificial intelligence has provided many intelligent solutions to urban life. For instance, an image-based intelligent technology, such as image classification of diseases, is widely used in daily life. However, the image in real life is mostly unlabeled, so the performance of many image-based intelligent models shows limitations. Therefore, how to use a large amount of unlabeled image data to build an efficient and high-quality model for better urban life has been an urgent research topic. In this paper, we propose an unsupervised image feature extraction method that is referred to as a stacked multi-granularity convolution denoising auto-encoder (SMGCDAE). The algorithm is based on a convolutional neural network (CNN), yet it introduces a multi-granularity kernel. This approach resolved issues with image unicity by extracting a diverse category of high-level features. In addition, the denoising auto-encoder ensures stability and improves the classification accuracy by extracting more robust features. The algorithm was assessed using three image benchmark datasets and a series of meningitis images, achieving higher average accuracy than other methods. These results suggest that the algorithm is capable of extracting more discriminative high-level features and thus offers superior performance compared with the existing methodologies

    A Novel Business Process Prediction Model Using a DeepLearning Method

    Get PDF
    The ability to proactively monitor business pro-cesses is a main competitive differentiator for firms. Processexecution logs generated by process aware informationsystems help to make process specific predictions forenabling a proactive situational awareness. The goal of theproposed approach is to predict the next process event fromthe completed activities of the running process instance,based on the execution log data from previously completedprocess instances. By predicting process events, companiescan initiate timely interventions to address undesired devi-ations from the desired workflow. The paper proposes amulti-stage deep learning approach that formulates the nextevent prediction problem as a classification problem. Fol-lowing a feature pre-processing stage with n-grams andfeature hashing, a deep learning model consisting of anunsupervised pre-training component with stacked autoen-coders and a supervised fine-tuning component is applied.Experiments on a variety of business process log datasetsshow that the multi-stage deep learning approach providespromising results. The study also compared the results toexisting deep recurrent neural networks and conventionalclassification approaches. Furthermore, the paper addressesthe identification of suitable hyperparameters for the pro-posed approach, and the handling of the imbalanced nature ofbusiness process event datasets

    The era of big data: Genome-scale modelling meets machine learning

    Get PDF
    With omics data being generated at an unprecedented rate, genome-scale modelling has become pivotal in its organisation and analysis. However, machine learning methods have been gaining ground in cases where knowledge is insufficient to represent the mechanisms underlying such data or as a means for data curation prior to attempting mechanistic modelling. We discuss the latest advances in genome-scale modelling and the development of optimisation algorithms for network and error reduction, intracellular constraining and applications to strain design. We further review applications of supervised and unsupervised machine learning methods to omics datasets from microbial and mammalian cell systems and present efforts to harness the potential of both modelling approaches through hybrid modelling

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    A Comprehensive Survey on Rare Event Prediction

    Full text link
    Rare event prediction involves identifying and forecasting events with a low probability using machine learning and data analysis. Due to the imbalanced data distributions, where the frequency of common events vastly outweighs that of rare events, it requires using specialized methods within each step of the machine learning pipeline, i.e., from data processing to algorithms to evaluation protocols. Predicting the occurrences of rare events is important for real-world applications, such as Industry 4.0, and is an active research area in statistical and machine learning. This paper comprehensively reviews the current approaches for rare event prediction along four dimensions: rare event data, data processing, algorithmic approaches, and evaluation approaches. Specifically, we consider 73 datasets from different modalities (i.e., numerical, image, text, and audio), four major categories of data processing, five major algorithmic groupings, and two broader evaluation approaches. This paper aims to identify gaps in the current literature and highlight the challenges of predicting rare events. It also suggests potential research directions, which can help guide practitioners and researchers.Comment: 44 page

    Intrusion detection by machine learning = Behatolás detektálás gépi tanulás által

    Get PDF
    Since the early days of information technology, there have been many stakeholders who used the technological capabilities for their own benefit, be it legal operations, or illegal access to computational assets and sensitive information. Every year, businesses invest large amounts of effort into upgrading their IT infrastructure, yet, even today, they are unprepared to protect their most valuable assets: data and knowledge. This lack of protection was the main reason for the creation of this dissertation. During this study, intrusion detection, a field of information security, is evaluated through the use of several machine learning models performing signature and hybrid detection. This is a challenging field, mainly due to the high velocity and imbalanced nature of network traffic. To construct machine learning models capable of intrusion detection, the applied methodologies were the CRISP-DM process model designed to help data scientists with the planning, creation and integration of machine learning models into a business information infrastructure, and design science research interested in answering research questions with information technology artefacts. The two methodologies have a lot in common, which is further elaborated in the study. The goals of this dissertation were two-fold: first, to create an intrusion detector that could provide a high level of intrusion detection performance measured using accuracy and recall and second, to identify potential techniques that can increase intrusion detection performance. Out of the designed models, a hybrid autoencoder + stacking neural network model managed to achieve detection performance comparable to the best models that appeared in the related literature, with good detections on minority classes. To achieve this result, the techniques identified were synthetic sampling, advanced hyperparameter optimization, model ensembles and autoencoder networks. In addition, the dissertation set up a soft hierarchy among the different detection techniques in terms of performance and provides a brief outlook on potential future practical applications of network intrusion detection models as well
    corecore