313 research outputs found

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Enabling Covariance-Based Feedback in Massive MIMO: A User Classification Approach

    Full text link
    In this paper, we propose a novel channel feedback scheme for frequency division duplexing massive multi-input multi-output systems. The concept uses the notion of user statistical separability which was hinted in several prior works in the massive antenna regime but not fully exploited so far. We here propose a hybrid statistical-instantaneous feedback scheme based on a user classification mechanism where the classification metric derives from a rate bound analysis. According to classification results, a user either operates on a statistical feedback mode or instantaneous mode. Our results illustrate the sum rate advantages of our scheme under a global feedback overhead constraint.Comment: 5 pages, 4 figures, conference paper, 2018 Asilomar Conference on Signals, Systems, and Computer

    A Covariance-Based Hybrid Channel Feedback in FDD Massive MIMO Systems

    Full text link
    In this paper, a novel covariance-based channel feedback mechanism is investigated for frequency division duplexing (FDD) massive multi-input multi-output (MIMO) systems. The concept capitalizes on the notion of user statistical separability which was hinted in several prior works in the massive antenna regime but not fully exploited so far. We here propose a hybrid statistical-instantaneous feedback mechanism where the users are separated into two classes of feedback design based on their channel covariance. Under the hybrid framework, each user either operates on a statistical feedback mode or quantized instantaneous channel feedback mode depending on their so-called statistical isolability. The key challenge lies in the design of a covariance-aware classification algorithm which can handle the complex mutual interactions between all users. The classification is derived from rate bound principles. A suitable precoding method is also devised under the mixed statistical and instantaneous feedback model. Simulations are performed to validate our analytical results and illustrate the sum rate advantages of the proposed feedback scheme under a global feedback overhead constraint.Comment: 31 pages, 9 figure

    Low-Complexity Structured Precoding for Spatially Correlated MIMO Channels

    Full text link
    The focus of this paper is on spatial precoding in correlated multi-antenna channels, where the number of independent data-streams is adapted to trade-off the data-rate with the transmitter complexity. Towards the goal of a low-complexity implementation, a structured precoder is proposed, where the precoder matrix evolves fairly slowly at a rate comparable with the statistical evolution of the channel. Here, the eigenvectors of the precoder matrix correspond to the dominant eigenvectors of the transmit covariance matrix, whereas the power allocation across the modes is fixed, known at both the ends, and is of low-complexity. A particular case of the proposed scheme (semiunitary precoding), where the spatial modes are excited with equal power, is shown to be near-optimal in matched channels. A matched channel is one where the dominant eigenvalues of the transmit covariance matrix are well-conditioned and their number equals the number of independent data-streams, and the receive covariance matrix is also well-conditioned. In mismatched channels, where the above conditions are not met, it is shown that the loss in performance with semiunitary precoding when compared with a perfect channel information benchmark is substantial. This loss needs to be mitigated via limited feedback techniques that provide partial channel information to the transmitter. More importantly, we develop matching metrics that capture the degree of matching of a channel to the precoder structure continuously, and allow ordering two matrix channels in terms of their mutual information or error probability performance.Comment: 45 pages, 7 figures, to be submitted to IEEE Trans. Inform. Theor

    A Survey on MIMO Transmission with Discrete Input Signals: Technical Challenges, Advances, and Future Trends

    Full text link
    Multiple antennas have been exploited for spatial multiplexing and diversity transmission in a wide range of communication applications. However, most of the advances in the design of high speed wireless multiple-input multiple output (MIMO) systems are based on information-theoretic principles that demonstrate how to efficiently transmit signals conforming to Gaussian distribution. Although the Gaussian signal is capacity-achieving, signals conforming to discrete constellations are transmitted in practical communication systems. As a result, this paper is motivated to provide a comprehensive overview on MIMO transmission design with discrete input signals. We first summarize the existing fundamental results for MIMO systems with discrete input signals. Then, focusing on the basic point-to-point MIMO systems, we examine transmission schemes based on three most important criteria for communication systems: the mutual information driven designs, the mean square error driven designs, and the diversity driven designs. Particularly, a unified framework which designs low complexity transmission schemes applicable to massive MIMO systems in upcoming 5G wireless networks is provided in the first time. Moreover, adaptive transmission designs which switch among these criteria based on the channel conditions to formulate the best transmission strategy are discussed. Then, we provide a survey of the transmission designs with discrete input signals for multiuser MIMO scenarios, including MIMO uplink transmission, MIMO downlink transmission, MIMO interference channel, and MIMO wiretap channel. Additionally, we discuss the transmission designs with discrete input signals for other systems using MIMO technology. Finally, technical challenges which remain unresolved at the time of writing are summarized and the future trends of transmission designs with discrete input signals are addressed.Comment: 110 pages, 512 references, submit to Proceedings of the IEE

    Transmit Beamforming for MISO Broadcast Channels with Statistical and Delayed CSIT

    Full text link
    This paper focuses on linear beamforming design and power allocation strategy for ergodic rate optimization in a two-user Multiple-Input-Single-Output (MISO) system with statistical and delayed channel state information at the transmitter (CSIT). We propose a transmission strategy, denoted as Statistical Alternative MAT (SAMAT), which exploits both channel statistics and delayed CSIT. Firstly, with statistical CSIT only, we focus on statistical beamforming (SBF) design that maximizes a lower bound on the ergodic sum-rate. Secondly, relying on both statistical and delayed CSIT, an iterative algorithm is proposed to compute the precoding vectors of Alternative MAT (AMAT), originally proposed by Yang et al., which maximizes an approximation of the ergodic sum-rate with equal power allocation. Finally, via proper power allocation, the SAMAT framework is proposed to softly bridge between SBF and AMAT for an arbitrary number of transmit antennas and signal-to-noise ratio (SNR). A necessary condition for the power allocation optimization is identified from the Karush-Kuhn-Tucker (KKT) conditions. The optimum power allocation to maximize an ergodic sum-rate approximation is computed using Sequential Quadratic Programming (SQP). Simulation results show that the proposed SAMAT scheme yields a significant sum-rate enhancement over both SBF and AMAT.Comment: Accepted to IEEE Transaction on Communication

    Spatial Precoder Design for Space-Time Coded MIMO Systems: Based on Fixed Parameters of MIMO Channels

    Full text link
    In this paper, we introduce the novel use of linear spatial precoding based on fixed and known parameters of multiple-input multiple-output (MIMO) channels to improve the performance of space-time coded MIMO systems. We derive linear spatial precoding schemes for both coherent (channel is known at the receiver) and non-coherent (channel is un-known at the receiver) space-time coded MIMO systems. Antenna spacing and antenna placement (geometry) are considered as fixed parameters of MIMO channels, which are readily known at the transmitter. These precoding schemes exploit the antenna placement information at both ends of the MIMO channel to ameliorate the effect of non-ideal antenna placement on the performance of space-time coded systems. In these schemes, the precoder is fixed for given transmit and receive antenna configurations and transmitter does not require any feedback of channel state information (partial or full) from the receiver. Closed form solutions for both precoding schemes are presented for systems with up to three receiver antennas. A generalized method is proposed for more than three receiver antennas. We use the coherent space-time block codes (STBC) and differential space-time block codes to analyze the performance of proposed precoding schemes. Simulation results show that at low SNRs, both precoders give significant performance improvement over a non-precoded system for small antenna aperture sizes.Comment: 15 Figures, 1-Table. Submitted to Personal Wireless Communications Springer 08/12/200

    FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification

    Full text link
    We propose a novel method for massive Multiple-Input Multiple-Output (massive MIMO) in Frequency Division Duplexing (FDD) systems. Due to the large frequency separation between Uplink (UL) and Downlink (DL), in FDD systems channel reciprocity does not hold. Hence, in order to provide DL channel state information to the Base Station (BS), closed-loop DL channel probing and Channel State Information (CSI) feedback is needed. In massive MIMO this incurs typically a large training overhead. For example, in a typical configuration with M = 200 BS antennas and fading coherence block of T = 200 symbols, the resulting rate penalty factor due to the DL training overhead, given by max{0, 1 - M/T}, is close to 0. To reduce this overhead, we build upon the well-known fact that the Angular Scattering Function (ASF) of the user channels is invariant over frequency intervals whose size is small with respect to the carrier frequency (as in current FDD cellular standards). This allows to estimate the users' DL channel covariance matrix from UL pilots without additional overhead. Based on this covariance information, we propose a novel sparsifying precoder in order to maximize the rank of the effective sparsified channel matrix subject to the condition that each effective user channel has sparsity not larger than some desired DL pilot dimension T_{dl}, resulting in the DL training overhead factor max{0, 1 - T_{dl} / T} and CSI feedback cost of T_{dl} pilot measurements. The optimization of the sparsifying precoder is formulated as a Mixed Integer Linear Program, that can be efficiently solved. Extensive simulation results demonstrate the superiority of the proposed approach with respect to concurrent state-of-the-art schemes based on compressed sensing or UL/DL dictionary learning.Comment: 30 pages, 7 figures - Further simulation results and comparisons with the state-of-the-art techniques, compared to the previous versio

    Generalised MBER-based vector precoding design for multiuser transmission

    No full text
    We propose a generalized vector precoding (VP) design based on the minimum bit error rate (MBER) criterion for multiuser transmission in the downlink of a multiuser system, where the base station (BS) equipped with multiple transmitting antennas communicates with single-receiving-antenna mobile station (MS) receivers each having a modulo device. Given the knowledge of the channel state information and the current information symbol vector to be transmitted, our scheme directly generates the effective symbol vector based on the MBER criterion using the particle swarm optimization (PSO) algorithm. The proposed PSO-aided generalized MBER VP scheme is shown to outperform the powerful minimum mean-square-error (MMSE) VP and improved MMSE-VP benchmarks, particularly for rank-deficient systems, where the number of BS transmitting antennas is lower than the number of MSs supported

    A Framework on Hybrid MIMO Transceiver Design based on Matrix-Monotonic Optimization

    Full text link
    Hybrid transceiver can strike a balance between complexity and performance of multiple-input multiple-output (MIMO) systems. In this paper, we develop a unified framework on hybrid MIMO transceiver design using matrix-monotonic optimization. The proposed framework addresses general hybrid transceiver design, rather than just limiting to certain high frequency bands, such as millimeter wave (mmWave) or terahertz bands or relying on the sparsity of some specific wireless channels. In the proposed framework, analog and digital parts of a transceiver, either linear or nonlinear, are jointly optimized. Based on matrix-monotonic optimization, we demonstrate that the combination of the optimal analog precoders and processors are equivalent to eigenchannel selection for various optimal hybrid MIMO transceivers. From the optimal structure, several effective algorithms are derived to compute the analog transceivers under unit modulus constraints. Furthermore, in order to reduce computation complexity, a simple random algorithm is introduced for analog transceiver optimization. Once the analog part of a transceiver is determined, the closed-form digital part can be obtained. Numerical results verify the advantages of the proposed design.Comment: 13 pages,7 figures, IEEE Signal Processing 201
    • …
    corecore