1,307 research outputs found

    Regularity Preserving but not Reflecting Encodings

    Full text link
    Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory much attention has been devoted to regularity preserving functions. A natural question arising in these contexts is: Is there a bijective encoding such that its image function preserves regularity of languages, but its pre-image function does not? Our main result answers this question in the affirmative: For every countable class C of languages there exists a bijective encoding f such that for every language L in C its image f[L] is regular. Our construction of such encodings has several noteworthy consequences. Firstly, anomalies arise when models of computation are compared with respect to a known concept of implementation that is based on encodings which are not required to be computable: Every countable decision model can be implemented, in this sense, by finite-state automata, even via bijective encodings. Hence deterministic finite-state automata would be equally powerful as Turing machine deciders. A second consequence concerns the recognizability of sets of natural numbers via number representations and finite automata. A set of numbers is said to be recognizable with respect to a representation if an automaton accepts the language of representations. Our result entails that there is one number representation with respect to which every recursive set is recognizable

    Implications of quantum automata for contextuality

    Full text link
    We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error o(loglogn) o(\log \log n) -space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem solvable by a Las Vegas realtime QFA, but not by any bounded-error realtime PFA. The same problem can be solvable by an exact two-way QFA in linear expected time but not by any exact two-way PFA. - There is a family of promise problems such that each promise problem can be solvable by a two-state exact realtime QFAs, but, there is no such bound on the number of states of realtime bounded-error PFAs solving the members this family. Our results imply that there exist zero-error quantum computational devices with a \emph{single qubit} of memory that cannot be simulated by any finite memory classical computational model. This provides a computational perspective on results regarding ontological theories of quantum mechanics \cite{Hardy04}, \cite{Montina08}. As a consequence we find that classical automata based simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently powerful to simulate quantum contextuality. We conclude by highlighting the interplay between results from automata models and their application to developing a general framework for quantum contextuality.Comment: 22 page

    Tree-Structured Problems and Parallel Computation

    Get PDF
    Turing-Maschinen sind das klassische Beschreibungsmittel für Wortsprachen und werden daher auch benützt, um Komplexitätsklassen zu definieren. Dies geschieht zum Beispiel durch das Einschränken des Platz- oder Zeitaufwandes der Berechnung zur Lösung eines Problems. Für sehr niedrige Komplexität wie etwa sublineare Laufzeit, werden Schaltkreise verwendet. Schaltkreise können auf natürliche Art Komplexitäten wie etwa logarithmische Laufzeit modellieren. Ebenso können sie als eine Art paralleles Rechenmodell gesehen werden. Eine wichtige parallele Komplexitätsklasse ist NC1. Sie wird beschrieben durch Boolesche Schaltkreise logarithmischer Tiefe und beschränktem Eingangsgrad der Gatter. Eine initiale Beobachtung, die die vorliegende Arbeit motiviert, ist, dass viele schwere Probleme in NC1 eine ähnliche Struktur haben und auf ähnliche Art und Weise gelöst werden. Das Auswertungsproblem für Boolesche Formeln ist eines der repräsentativsten Probleme aus dieser Klasse: Gegeben ist hier eine aussagenlogische Formel samt Belegung für die Variablen; gefragt ist, ob sie zu wahr oder zu falsch auswertet. Dieses Problem wird in NC1 gelöst durch den Algorithmus von Buss. Auf ähnliche Art können arithmetische Formeln in #NC1 ausgewertet oder das Wortproblem für Visibly-Pushdown-Sprachen gelöst werden. Zu besagter Klasse an Problemen gehört auch Courcelles Theorem, welches Berechnungen in Baumautomaten involviert. Zu bemerken ist, dass alle angesprochenen Probleme gemeinsam haben, dass sie aus Instanzen bestehen, die baumartig sind. Formeln sind Bäume, Visibly-Pushdown-Sprachen enthalten als Wörter kodierte Bäume und Courcelles Theorem betrachtet Graphen mit beschränkter Baumweite, d.h. Graphen, die sich als Baum darstellen lassen. Insbesondere Letzteres ist ein Schema, das häufiger auftritt. Zum Beispiel gibt es NP-vollständige Graphprobleme wie das Finden von Hamilton-Kreisen, welches unter beschränkter Baumweite in P fällt. Neuere Analysen konnten diese Schranke weiter zu SAC1 verbessern, was eine parallele Komplexitätsklasse ist. Die angesprochenen Probleme kommen aus unterschiedlichen Bereichen und haben individuelle Lösungen. Hauptthese dieser Arbeit ist, dass sich diese Vielfalt vereinheitlichen lässt. Es wird ein generisches Lösungskonzept vorgestellt, welches darauf beruht, dass sich die Probleme auf ein Termevaluierungsproblem reduzieren lassen. Kernstück ist daher ein Termevaluierungsalgorithmus, der unabhängig von der Algebra, über welche der Term evaluiert werden soll, ist. Resultat ist, dass eine Vielzahl, darunter die oben angesprochenen Probleme, sich auf analoge Art lösen lassen, und dass sich ebenso leicht neue Resultate zeigen lassen. Diese Menge an Resultaten hätte sich ohne den vereinheitlichten Lösungsansatz nicht innerhalb des Rahmens einer Arbeit wie der vorliegenden zeigen lassen. Der entwickelte Lösungsansatz führt stets zu Schaltkreisfamilien polylogarithmischer Tiefe. Es wird jedoch auch die Frage behandelt, wie mächtig Schaltkreisfamilien konstanter Tiefe noch bezüglich Termevaluierung sind. Die Klasse AC0 ist hierfür ein natürlicher Kandidat; sie entspricht der Menge der Sprachen, die durch Logik erster Ordung beschreibbar sind. Um dieses Problem anzugehen, wird zunächst das Termevaluierungsproblem über endlichen Algebren betrachtet. Dieses wiederum lässt sich in das Wortproblem von Visibly-Pushdown-Sprachen einbetten. Daher handelt dieser Teil der Arbeit vornehmlich von der Beschreibbarkeit von Visibly-Pushdown-Sprachen in Logik erster Ordnung. Hierbei treten ungelöste Probleme zu Tage, welche ein Indiz dafür sind, wie schlecht die Komplexität konstanter Tiefe bisher noch verstanden ist, und das, trotz des Resultats von Furst, Saxe und Sipser, bzw. Håstads. Die bis jetzt beschrieben Inhalte sind Teil einer kontinuierlichen Entwicklung. Es gibt jedoch ein Thema in dieser Arbeit, das orthogonal dazu ist: Automaten und im speziellen Cost-Register-Automaten. Zum einen sind, wie oben angedeutet, Automaten Beispiele für Anwendungen des hier entwickelten generischen Lösungsansatzes. Zum anderen können sie selbst zur Beschreibung von Termevaluierungsproblemen dienen; so können Visibly-Pushdown-Automaten Termevaluierung über endlichen Algebren ausführen. Um über endliche Algebren hinauszugehen, benötigen die Automaten mehr Speicher. Visibly-Pushdown-Automaten haben einen Keller, der genau dafür geeignet ist, die Baumstruktur einer Eingabeformel zu verifizieren. Für nichtendliche Algebren eignet sich ein Modell, welches hier vorgestellt werden soll. Es kombiniert Visibly-Pushdown-Automaten mit Cost-Register-Automaten. Ein Cost-Register-Automat ist ein endlicher Automat, welcher mit zusätzlichen Registern ausgestattet ist. Die Register können Werte einer Algebra speichern und werden in jedem Schritt in Abhängigkeit des Eingabezeichens und des Zustandes aktualisiert. Dieser Einwegdatenfluss von Zuständen zu Registern sorgt dafür, dass dieses Modell nicht nur entscheidbar bleibt, sondern, in Abhängigkeit der Algebra, auch niedrige Komplexität hat. Das neue Modell der Cost-Register-Visibly-Pushdown-Automaten kann nun Terme evaluieren. Es werden grundlegende Eigenschaften gezeigt, einschließlich Komplexitätsaussagen

    Unification and Logarithmic Space

    Full text link
    We present an algebraic characterization of the complexity classes Logspace and Nlogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is rooted in proof theory and more specifically linear logic and geometry of interaction. We show how to build a model of computation in the unification algebra and then, by means of a syntactic representation of finite permutations in the algebra, we prove that whether an observation (the algebraic counterpart of a program) accepts a word can be decided within logarithmic space. Finally, we show that the construction naturally corresponds to pointer machines, a convenient way of understanding logarithmic space computation.Comment: arXiv admin note: text overlap with arXiv:1402.432
    corecore