1,870 research outputs found

    On Brownian limits of planar trees and maps with a prescribed degree sequence

    Full text link
    We study a configuration model on bipartite planar maps where, given nn even integers, one samples a planar map uniformly at random with these face degrees. We prove that when suitably rescaled, such maps always admit subsequential limits as n→∞n \to \infty in the Gromov-Hausdorff-Prokhorov topology. Further, we show that they converge in distribution towards the celebrated Brownian map, and more generally a Brownian disk for maps with a boundary, if and only if there is no inner face with a macroscopic degree, or, if the perimeter is too big, the maps degenerate and converge to the Brownian CRT. The latter case include that of size-conditioned Boltzmann map associated with critical weights in the domain of attraction of a Cauchy distribution, which was missing in the literature. Our proofs rely on bijections with random labelled plane trees, which are similarly sampled uniformly given nn outdegrees. Along the way, we obtain some results on the geometry of such trees, such as a convergence to the Brownian CRT but only in the weaker sense of subtrees spanned by random vertices, which are of independent interest.Comment: The previous version has been merged with arXiv:1902.0453

    Confluence of geodesic paths and separating loops in large planar quadrangulations

    Full text link
    We consider planar quadrangulations with three marked vertices and discuss the geometry of triangles made of three geodesic paths joining them. We also study the geometry of minimal separating loops, i.e. paths of minimal length among all closed paths passing by one of the three vertices and separating the two others in the quadrangulation. We concentrate on the universal scaling limit of large quadrangulations, also known as the Brownian map, where pairs of geodesic paths or minimal separating loops have common parts of non-zero macroscopic length. This is the phenomenon of confluence, which distinguishes the geometry of random quadrangulations from that of smooth surfaces. We characterize the universal probability distribution for the lengths of these common parts.Comment: 48 pages, 33 color figures. Final version, with one concluding paragraph and one reference added, and several other small correction

    Uniform Infinite Planar Triangulations

    Full text link
    The existence of the weak limit as n --> infinity of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio

    Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop

    Full text link
    We consider quadrangulations with a boundary and derive explicit expressions for the generating functions of these maps with either a marked vertex at a prescribed distance from the boundary, or two boundary vertices at a prescribed mutual distance in the map. For large maps, this yields explicit formulas for the bulk-boundary and boundary-boundary correlators in the various encountered scaling regimes: a small boundary, a dense boundary and a critical boundary regime. The critical boundary regime is characterized by a one-parameter family of scaling functions interpolating between the Brownian map and the Brownian Continuum Random Tree. We discuss the cases of both generic and self-avoiding boundaries, which are shown to share the same universal scaling limit. We finally address the question of the bulk-loop distance statistics in the context of planar quadrangulations equipped with a self-avoiding loop. Here again, a new family of scaling functions describing critical loops is discovered.Comment: 55 pages, 14 figures, final version with minor correction

    Distance statistics in large toroidal maps

    Full text link
    We compute a number of distance-dependent universal scaling functions characterizing the distance statistics of large maps of genus one. In particular, we obtain explicitly the probability distribution for the length of the shortest non-contractible loop passing via a random point in the map, and that for the distance between two random points. Our results are derived in the context of bipartite toroidal quadrangulations, using their coding by well-labeled 1-trees, which are maps of genus one with a single face and appropriate integer vertex labels. Within this framework, the distributions above are simply obtained as scaling limits of appropriate generating functions for well-labeled 1-trees, all expressible in terms of a small number of basic scaling functions for well-labeled plane trees.Comment: 24 pages, 9 figures, minor corrections, new added reference

    Constellations and multicontinued fractions: application to Eulerian triangulations

    Get PDF
    We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance.Comment: 12 pages, 4 figure

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
    • …
    corecore