1,226 research outputs found

    Omnidirectional Walking Pattern Generator Combining Virtual Constraints and Preview Control for Humanoid Robots

    Get PDF
    This paper presents a novel omnidirectional walking pattern generator for bipedal locomotion combining two structurally different approaches based on the virtual constraints and the preview control theories to generate a flexible gait that can be modified on-line. The proposed strategy synchronizes the displacement of the robot along the two planes of walking: the zero moment point based preview control is responsible for the lateral component of the gait, while the sagittal motion is generated by a more dynamical approach based on virtual constraints. The resulting algorithm is characterized by a low computational complexity and high flexibility, requisite for a successful deployment to humanoid robots operating in real world scenarios. This solution is motivated by observations in biomechanics showing how during a nominal gait the dynamic motion of the human walk is mainly generated along the sagittal plane. We describe the implementation of the algorithm and we detail the strategy chosen to enable omnidirectionality and on-line gait tuning. Finally, we validate our strategy through simulation experiments using the COMAN + platform, an adult size humanoid robot developed at Istituto Italiano di Tecnologia. Finally, the hybrid walking pattern generator is implemented on real hardware, demonstrating promising results: the WPG trajectories results in open-loop stable walking in the absence of external disturbances

    Bipedal Walking Analysis, Control, and Applications Towards Human-Like Behavior

    Get PDF
    Realizing the essentials of bipedal walking balance is one of the core studies in both robotics and biomechanics. Although the recent developments of walking control on bipedal robots have brought the humanoid automation to a different level, the walking performance is still limited compared to human walking, which also restricts the related applications in biomechanics and rehabilitation. To mitigate the discrepancy between robotic walking and human walking, this dissertation is broken into three parts to develop the control methods to improve three important perspectives: predictive walking behavior, gait optimization, and stepping strategy. To improve the predictive walking behavior captured by the model predictive control (MPC) which is transitionally applied with the nonlinear tracking control in sequence, a quadratic program (QP)-based controller is proposed to unify center of mass (COM) planning using MPC and a nonlinear torque control with control Lyapunov function (CLF). For the gait optimization, we focus on the algorithms of trajectory optimization with direct collocation framework. We propose a robust trajectory optimization using step-time sampling for a simple walker under terrain uncertainties. Towards generating human-like walking gait with multi-domain (phases), we improve the optimization through contact with more accurate transcription method for level walking, and generalize the hybrid zero dynamics (HZD) gait optimization with modified contact conditions for walking on various terrains. The results are compared with human walking gaits, where the similar trends and the sources of discrepancies are identified. In the third part for stepping strategy, we perform step estimation based on capture point (CP) for different human movements, including single-step (balance) recovery, walking and walking with slip. The analysis provides the insights of the efficacy and limitation of CP-based step estimation for human gait

    Planning and Control Strategies for Motion and Interaction of the Humanoid Robot COMAN+

    Get PDF
    Despite the majority of robotic platforms are still confined in controlled environments such as factories, thanks to the ever-increasing level of autonomy and the progress on human-robot interaction, robots are starting to be employed for different operations, expanding their focus from uniquely industrial to more diversified scenarios. Humanoid research seeks to obtain the versatility and dexterity of robots capable of mimicking human motion in any environment. With the aim of operating side-to-side with humans, they should be able to carry out complex tasks without posing a threat during operations. In this regard, locomotion, physical interaction with the environment and safety are three essential skills to develop for a biped. Concerning the higher behavioural level of a humanoid, this thesis addresses both ad-hoc movements generated for specific physical interaction tasks and cyclic movements for locomotion. While belonging to the same category and sharing some of the theoretical obstacles, these actions require different approaches: a general high-level task is composed of specific movements that depend on the environment and the nature of the task itself, while regular locomotion involves the generation of periodic trajectories of the limbs. Separate planning and control architectures targeting these aspects of biped motion are designed and developed both from a theoretical and a practical standpoint, demonstrating their efficacy on the new humanoid robot COMAN+, built at Istituto Italiano di Tecnologia. The problem of interaction has been tackled by mimicking the intrinsic elasticity of human muscles, integrating active compliant controllers. However, while state-of-the-art robots may be endowed with compliant architectures, not many can withstand potential system failures that could compromise the safety of a human interacting with the robot. This thesis proposes an implementation of such low-level controller that guarantees a fail-safe behaviour, removing the threat that a humanoid robot could pose if a system failure occurred

    Bipedal Walking Analysis, Control, and Applications Towards Human-Like Behavior

    Get PDF
    Realizing the essentials of bipedal walking balance is one of the core studies in both robotics and biomechanics. Although the recent developments of walking control on bipedal robots have brought the humanoid automation to a different level, the walking performance is still limited compared to human walking, which also restricts the related applications in biomechanics and rehabilitation. To mitigate the discrepancy between robotic walking and human walking, this dissertation is broken into three parts to develop the control methods to improve three important perspectives: predictive walking behavior, gait optimization, and stepping strategy. To improve the predictive walking behavior captured by the model predictive control (MPC) which is transitionally applied with the nonlinear tracking control in sequence, a quadratic program (QP)-based controller is proposed to unify center of mass (COM) planning using MPC and a nonlinear torque control with control Lyapunov function (CLF). For the gait optimization, we focus on the algorithms of trajectory optimization with direct collocation framework. We propose a robust trajectory optimization using step-time sampling for a simple walker under terrain uncertainties. Towards generating human-like walking gait with multi-domain (phases), we improve the optimization through contact with more accurate transcription method for level walking, and generalize the hybrid zero dynamics (HZD) gait optimization with modified contact conditions for walking on various terrains. The results are compared with human walking gaits, where the similar trends and the sources of discrepancies are identified. In the third part for stepping strategy, we perform step estimation based on capture point (CP) for different human movements, including single-step (balance) recovery, walking and walking with slip. The analysis provides the insights of the efficacy and limitation of CP-based step estimation for human gait

    A Dual-SLIP Model For Dynamic Walking In A Humanoid Over Uneven Terrain

    Get PDF

    Control Methods for Compensation and Inhibition of Muscle Fatigue in Neuroprosthetic Devices

    Get PDF
    For individuals that suffer from paraplegia activities of daily life are greatly inhibited. With over 5,000 new cases of paraplegia each year in the United States alone there is a clear need to develop technologies to restore lower extremity function to these individuals. One method that has shown promise for restoring functional movement to paralyzed limbs is the use of functional electrical stimulation (FES), which is the application of electrical stimulation to produce a muscle contraction and create a functional movement. This technique has been shown to be able to restore numerous motor functions in persons with disability; however, the application of the electrical stimulation can cause rapid muscle fatigue, limiting the duration that these devices may be used. As an alternative some research has developed fully actuated orthoses to restore motor function via electric motors. These devices have been shown to be capable of achieving greater walking durations than FES systems; however, these systems can be significantly larger and heavier. To develop smaller and more efficient systems some research has explored hybrid neuroprostheses that use both FES and electric motors. However, these hybrid systems present new research challenges. In this dissertation novel control methods to compensate/inhibit muscle fatigue in neuroprosthetic and hybrid neuroprosthetic devices are developed. Some of these methods seek to compensate for the effects of fatigue by using fatigue dynamics in the control development or by minimizing the amount of stimulation used to produce a desired movement. Other control methods presented here seek to inhibit the effects of muscle fatigue by adding an electric motor as additional actuation. These control methods use either switching or cooperative control of FES and an electric motor to achieve longer durations of use than systems that strictly use FES. Finally, the necessity for the continued study of hybrid gait restoration systems is facilitated through simulations of walking with a hybrid neuroprosthesis. The results of these simulations demonstrate the potential for hybrid neuroprosthesis gait restoration devices to be more efficient and achieve greater walking durations than systems that use strictly FES or strictly electric motors

    Forecast and control of heating loads in receding horizon

    Get PDF

    Virtual Structures Based Autonomous Formation Flying Control for Small Satellites

    Get PDF
    Many space organizations have a growing need to fly several small satellites close together in order to collect and correlate data from different satellite sensors. To do this requires teams of engineers monitoring the satellites orbits and planning maneuvers for the satellites every time the satellite leaves its desired trajectory or formation. This task of maintaining the satellites orbits quickly becomes an arduous and expensive feat for satellite operations centers. This research develops and analyzes algorithms that allow satellites to autonomously control their orbit and formation without human intervention. This goal is accomplished by developing and evaluating a decentralized, optimization-based control that can be used for autonomous formation flight of small satellites. To do this, virtual structures, model predictive control, and switching surfaces are used. An optimized guidance trajectory is also develop to reduce fuel usage of the system. The Hill-Clohessy-Wiltshire equations and the D\u27Amico relative orbital elements are used to describe the relative motion of the satellites. And a performance comparison of the L1, L2, and L∞ norms is completed as part of this work. The virtual structure, MPC based framework combined with the switching surfaces enables a scalable method that allows satellites to maneuver safely within their formation, while also minimizing fuel usage
    corecore