261 research outputs found

    Chaos in a generalized Lorenz system

    Full text link
    A three-component dynamic system with influence of pumping and nonlinear dissipation describing a quantum cavity electrodynamic device is studied. Different dynamical regimes are investigated in terms of divergent trajectories approaches and fractal statistics. It has been shown, that in such a system stable and unstable dissipative structures type of limit cycles can be formed with variation of pumping and nonlinear dissipation rate. Transitions to chaotic regime and the corresponding chaotic attractor are studied in details

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    New lower bound for the Hilbert number in low degree Kolmogorov systems

    Full text link
    Our main goal in this paper is to study the number of small-amplitude isolated periodic orbits, so-called limit cycles, surrounding only one equilibrium point a class of polynomial Kolmogorov systems. We denote by MK(n)\mathcal M_{K}(n) the maximum number of limit cycles bifurcating from the equilibrium point via a degenerate Hopf bifurcation for a polynomial Kolmogorov vector field of degree nn. In this work, we obtain another example such that MK(3)6 \mathcal M_{K}(3)\geq 6. In addition, we obtain new lower bounds for MK(n)\mathcal M_{K}(n) proving that MK(4)13\mathcal M_{K}(4)\geq 13 and MK(5)22\mathcal M_{K}(5)\geq 22

    Theory of differential inclusions and its application in mechanics

    Full text link
    The following chapter deals with systems of differential equations with discontinuous right-hand sides. The key question is how to define the solutions of such systems. The most adequate approach is to treat discontinuous systems as systems with multivalued right-hand sides (differential inclusions). In this work three well-known definitions of solution of discontinuous system are considered. We will demonstrate the difference between these definitions and their application to different mechanical problems. Mathematical models of drilling systems with discontinuous friction torque characteristics are considered. Here, opposite to classical Coulomb symmetric friction law, the friction torque characteristic is asymmetrical. Problem of sudden load change is studied. Analytical methods of investigation of systems with such asymmetrical friction based on the use of Lyapunov functions are demonstrated. The Watt governor and Chua system are considered to show different aspects of computer modeling of discontinuous systems

    Hopf bifurcation problems near double positive equilibrium points for a class of quartic Kolmogorov model

    Get PDF
    The Kolmogorov model is a class of significant ecological models and is initially introduced to describe the interaction between two species occupying the same ecological habitat. Limit cycle bifurcation problem is close to Hilbertis 16th problem. In this paper, we focus on investigating bifurcation of limit cycle for a class of quartic Kolmogorov model with two positive equilibrium points. Using the singular values method, we obtain the Lyapunov constants for each positive equilibrium point and investigate their limit cycle bifurcations behavior. Furthermore, based on the analysis of their Lyapunov constants' structure and Hopf bifurcation, we give the condition that each one positive equilibrium point of studied model can bifurcate 5 limit cycles, which include 3 stable limit cycles

    Nelinearne pojave u energetskoj elektronici

    Get PDF
    A new class of phenomena has recently been discovered in nonlinear dynamics. New concepts and terms have entered the vocabulary to replace time functions and frequency spectra in describing their behavior, e.g. chaos, bifurcation, fractal, Lyapunov exponent, period doubling, Poincaré map, strange attractor etc. The main objective of the paper is to summarize the state of the art in the advanced theory of nonlinear dynamical systems and illustrate its application in power electronics by three examples.Nedavno je otkrivena nova vrsta pojava na području dinamike nelinearnih sustava. Novi pojmovi i nazivi zamijenili su vremenske funkcije i frekvencijske spektre u opisivanju njihovog ponašanja. U rječnik su uvedeni nazivi kao što su: kaos, bifurkacija, fraktal, Lyapunov koeficijent, period udvostručavanja, Poincaréov dijagram, nepoznati atractor, itd. Osnovni cilj članka je dati pregled sadašnjeg stanja napredne teorije nelinearnih dinamičkih sustava. S tri primjera ilustrirana je njezina primjenu u energetskoj elektronici

    Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Get PDF
    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows

    Contributions of plasma physics to chaos and nonlinear dynamics

    Full text link
    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016
    corecore