25,665 research outputs found

    Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models

    Get PDF
    A computationally simple approach to inference in state space models is proposed, using approximate Bayesian computation (ABC). ABC avoids evaluation of an intractable likelihood by matching summary statistics for the observed data with statistics computed from data simulated from the true process, based on parameter draws from the prior. Draws that produce a 'match' between observed and simulated summaries are retained, and used to estimate the inaccessible posterior. With no reduction to a low-dimensional set of sufficient statistics being possible in the state space setting, we define the summaries as the maximum of an auxiliary likelihood function, and thereby exploit the asymptotic sufficiency of this estimator for the auxiliary parameter vector. We derive conditions under which this approach - including a computationally efficient version based on the auxiliary score - achieves Bayesian consistency. To reduce the well-documented inaccuracy of ABC in multi-parameter settings, we propose the separate treatment of each parameter dimension using an integrated likelihood technique. Three stochastic volatility models for which exact Bayesian inference is either computationally challenging, or infeasible, are used for illustration. We demonstrate that our approach compares favorably against an extensive set of approximate and exact comparators. An empirical illustration completes the paper.Comment: This paper is forthcoming at the Journal of Computational and Graphical Statistics. It also supersedes the earlier arXiv paper "Approximate Bayesian Computation in State Space Models" (arXiv:1409.8363

    Bayesian Cointegrated Vector Autoregression models incorporating Alpha-stable noise for inter-day price movements via Approximate Bayesian Computation

    Full text link
    We consider a statistical model for pairs of traded assets, based on a Cointegrated Vector Auto Regression (CVAR) Model. We extend standard CVAR models to incorporate estimation of model parameters in the presence of price series level shifts which are not accurately modeled in the standard Gaussian error correction model (ECM) framework. This involves developing a novel matrix variate Bayesian CVAR mixture model comprised of Gaussian errors intra-day and Alpha-stable errors inter-day in the ECM framework. To achieve this we derive a novel conjugate posterior model for the Scaled Mixtures of Normals (SMiN CVAR) representation of Alpha-stable inter-day innovations. These results are generalized to asymmetric models for the innovation noise at inter-day boundaries allowing for skewed Alpha-stable models. Our proposed model and sampling methodology is general, incorporating the current literature on Gaussian models as a special subclass and also allowing for price series level shifts either at random estimated time points or known a priori time points. We focus analysis on regularly observed non-Gaussian level shifts that can have significant effect on estimation performance in statistical models failing to account for such level shifts, such as at the close and open of markets. We compare the estimation accuracy of our model and estimation approach to standard frequentist and Bayesian procedures for CVAR models when non-Gaussian price series level shifts are present in the individual series, such as inter-day boundaries. We fit a bi-variate Alpha-stable model to the inter-day jumps and model the effect of such jumps on estimation of matrix-variate CVAR model parameters using the likelihood based Johansen procedure and a Bayesian estimation. We illustrate our model and the corresponding estimation procedures we develop on both synthetic and actual data.Comment: 30 page

    Variational Bayes with Intractable Likelihood

    Full text link
    Variational Bayes (VB) is rapidly becoming a popular tool for Bayesian inference in statistical modeling. However, the existing VB algorithms are restricted to cases where the likelihood is tractable, which precludes the use of VB in many interesting situations such as in state space models and in approximate Bayesian computation (ABC), where application of VB methods was previously impossible. This paper extends the scope of application of VB to cases where the likelihood is intractable, but can be estimated unbiasedly. The proposed VB method therefore makes it possible to carry out Bayesian inference in many statistical applications, including state space models and ABC. The method is generic in the sense that it can be applied to almost all statistical models without requiring too much model-based derivation, which is a drawback of many existing VB algorithms. We also show how the proposed method can be used to obtain highly accurate VB approximations of marginal posterior distributions.Comment: 40 pages, 6 figure

    Stochastic Volatility Filtering with Intractable Likelihoods

    Full text link
    This paper is concerned with particle filtering for α\alpha-stable stochastic volatility models. The α\alpha-stable distribution provides a flexible framework for modeling asymmetry and heavy tails, which is useful when modeling financial returns. An issue with this distributional assumption is the lack of a closed form for the probability density function. To estimate the volatility of financial returns in this setting, we develop a novel auxiliary particle filter. The algorithm we develop can be easily applied to any hidden Markov model for which the likelihood function is intractable or computationally expensive. The approximate target distribution of our auxiliary filter is based on the idea of approximate Bayesian computation (ABC). ABC methods allow for inference on posterior quantities in situations when the likelihood of the underlying model is not available in closed form, but simulating samples from it is possible. The ABC auxiliary particle filter (ABC-APF) that we propose provides not only a good alternative to state estimation in stochastic volatility models, but it also improves on the existing ABC literature. It allows for more flexibility in state estimation while improving on the accuracy through better proposal distributions in cases when the optimal importance density of the filter is unavailable in closed form. We assess the performance of the ABC-APF on a simulated dataset from the α\alpha-stable stochastic volatility model and compare it to other currently existing ABC filters

    Hyper-g Priors for Generalized Linear Models

    Full text link
    We develop an extension of the classical Zellner's g-prior to generalized linear models. The prior on the hyperparameter g is handled in a flexible way, so that any continuous proper hyperprior f(g) can be used, giving rise to a large class of hyper-g priors. Connections with the literature are described in detail. A fast and accurate integrated Laplace approximation of the marginal likelihood makes inference in large model spaces feasible. For posterior parameter estimation we propose an efficient and tuning-free Metropolis-Hastings sampler. The methodology is illustrated with variable selection and automatic covariate transformation in the Pima Indians diabetes data set.Comment: 30 pages, 12 figures, poster contribution at ISBA 201

    Divide and conquer in ABC: Expectation-Progagation algorithms for likelihood-free inference

    Full text link
    ABC algorithms are notoriously expensive in computing time, as they require simulating many complete artificial datasets from the model. We advocate in this paper a "divide and conquer" approach to ABC, where we split the likelihood into n factors, and combine in some way n "local" ABC approximations of each factor. This has two advantages: (a) such an approach is typically much faster than standard ABC and (b) it makes it possible to use local summary statistics (i.e. summary statistics that depend only on the data-points that correspond to a single factor), rather than global summary statistics (that depend on the complete dataset). This greatly alleviates the bias introduced by summary statistics, and even removes it entirely in situations where local summary statistics are simply the identity function. We focus on EP (Expectation-Propagation), a convenient and powerful way to combine n local approximations into a global approximation. Compared to the EP- ABC approach of Barthelm\'e and Chopin (2014), we present two variations, one based on the parallel EP algorithm of Cseke and Heskes (2011), which has the advantage of being implementable on a parallel architecture, and one version which bridges the gap between standard EP and parallel EP. We illustrate our approach with an expensive application of ABC, namely inference on spatial extremes.Comment: To appear in the forthcoming Handbook of Approximate Bayesian Computation (ABC), edited by S. Sisson, L. Fan, and M. Beaumon

    Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation

    Get PDF
    We present a novel family of deep neural architectures, named partially exchangeable networks (PENs) that leverage probabilistic symmetries. By design, PENs are invariant to block-switch transformations, which characterize the partial exchangeability properties of conditionally Markovian processes. Moreover, we show that any block-switch invariant function has a PEN-like representation. The DeepSets architecture is a special case of PEN and we can therefore also target fully exchangeable data. We employ PENs to learn summary statistics in approximate Bayesian computation (ABC). When comparing PENs to previous deep learning methods for learning summary statistics, our results are highly competitive, both considering time series and static models. Indeed, PENs provide more reliable posterior samples even when using less training data.Comment: Forthcoming on the Proceedings of ICML 2019. New comparisons with several different networks. We now use the Wasserstein distance to produce comparisons. Code available on GitHub. 16 pages, 5 figures, 21 table
    corecore