5,867 research outputs found

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object

    Statistical approaches for natural language modelling and monotone statistical machine translation

    Full text link
    Esta tesis reune algunas contribuciones al reconocimiento de formas estadístico y, más especícamente, a varias tareas del procesamiento del lenguaje natural. Varias técnicas estadísticas bien conocidas se revisan en esta tesis, a saber: estimación paramétrica, diseño de la función de pérdida y modelado estadístico. Estas técnicas se aplican a varias tareas del procesamiento del lenguajes natural tales como clasicación de documentos, modelado del lenguaje natural y traducción automática estadística. En relación con la estimación paramétrica, abordamos el problema del suavizado proponiendo una nueva técnica de estimación por máxima verosimilitud con dominio restringido (CDMLEa ). La técnica CDMLE evita la necesidad de la etapa de suavizado que propicia la pérdida de las propiedades del estimador máximo verosímil. Esta técnica se aplica a clasicación de documentos mediante el clasificador Naive Bayes. Más tarde, la técnica CDMLE se extiende a la estimación por máxima verosimilitud por leaving-one-out aplicandola al suavizado de modelos de lenguaje. Los resultados obtenidos en varias tareas de modelado del lenguaje natural, muestran una mejora en términos de perplejidad. En a la función de pérdida, se estudia cuidadosamente el diseño de funciones de pérdida diferentes a la 0-1. El estudio se centra en aquellas funciones de pérdida que reteniendo una complejidad de decodificación similar a la función 0-1, proporcionan una mayor flexibilidad. Analizamos y presentamos varias funciones de pérdida en varias tareas de traducción automática y con varios modelos de traducción. También, analizamos algunas reglas de traducción que destacan por causas prácticas tales como la regla de traducción directa; y, así mismo, profundizamos en la comprensión de los modelos log-lineares, que son de hecho, casos particulares de funciones de pérdida. Finalmente, se proponen varios modelos de traducción monótonos basados en técnicas de modelado estadístico .Andrés Ferrer, J. (2010). Statistical approaches for natural language modelling and monotone statistical machine translation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7109Palanci

    Constrained domain maximum likelihood estimation and the loss function in statistical pattern recognition

    Full text link
    In this thesis we present a new estimation algorithm for statistical models which does not incurs in the over-trainning problems. This new estimation techinque, the so-called, constrained domain maximum likelihood estimation (CDMLE) holds all the theoretical properties of the maximum likelihood estimation and furthermore it does not provides overtrained parameter sets. On the other hand, the impliations of the the 0-1 loss function assumption are analysed in the pattern recognition tasks. Specifically, more versatile functions are designed without increasing the optimal classification rule costs. This approach is applied to the statistical machine translation problem.Andrés Ferrer, J. (2008). Constrained domain maximum likelihood estimation and the loss function in statistical pattern recognition. http://hdl.handle.net/10251/13638Archivo delegad

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    The 2005 AMI system for the transcription of speech in meetings

    Get PDF
    In this paper we describe the 2005 AMI system for the transcription\ud of speech in meetings used for participation in the 2005 NIST\ud RT evaluations. The system was designed for participation in the speech\ud to text part of the evaluations, in particular for transcription of speech\ud recorded with multiple distant microphones and independent headset\ud microphones. System performance was tested on both conference room\ud and lecture style meetings. Although input sources are processed using\ud different front-ends, the recognition process is based on a unified system\ud architecture. The system operates in multiple passes and makes use\ud of state of the art technologies such as discriminative training, vocal\ud tract length normalisation, heteroscedastic linear discriminant analysis,\ud speaker adaptation with maximum likelihood linear regression and minimum\ud word error rate decoding. In this paper we describe the system performance\ud on the official development and test sets for the NIST RT05s\ud evaluations. The system was jointly developed in less than 10 months\ud by a multi-site team and was shown to achieve very competitive performance

    Anatomical curve identification

    Get PDF
    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed
    corecore