1,608 research outputs found

    EbbRT: a framework for building per-application library operating systems

    Full text link
    Efficient use of high speed hardware requires operating system components be customized to the application work- load. Our general purpose operating systems are ill-suited for this task. We present EbbRT, a framework for constructing per-application library operating systems for cloud applications. The primary objective of EbbRT is to enable high-performance in a tractable and maintainable fashion. This paper describes the design and implementation of EbbRT, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the EbbRT prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux

    Girgit: A Lightweight Framework for building Dynamically Adaptive Systems

    Get PDF
    Many modern systems must run in continually changing context. For example, a computer vision system to detect vandalism in train stations must function during the day and at night. The software components for image acquisition and people detection used during daytime may not be the same as those used at night.The system must adapt to the changing context by replacing running components such as image acquisition from color to infra-red. This adaptation involves context detection, decision on change in components, followed by seamless execution of a new configuration of components. All this must occur while minimizing the impact of dynamic change on continuity and loss in performance. We present Girgit, a lightweight Python-based framework for building dynamic adaptive systems. We evaluate it by building a dynamically adaptive vision system followed by performing experiments to determine its continuity and performance.Sociedad Argentina de Informática e Investigación Operativ

    Adaptive Execution of Compiled Queries

    Get PDF
    Compiling queries to machine code is arguably the most efficient way for executing queries. One often overlooked problem with compilation, however, is the time it takes to generate machine code. Even with fast compilation frameworks like LLVM, Generating machine code for complex queries routinely takes hundreds of milliseconds. Such compilation times can be a major disadvantage for workloads that execute many complex, but quick queries. To solve this problem, we propose an adaptive execution framework, which dynamically and transparently switches from interpretation to compilation. We also propose a fast bytecode interpreter for LLVM, which can execute queries without costly translation to machine code and thereby dramatically reduces query latency. Adaptive execution is dynamic, fine-grained, and can execute different code paths of the same query using different execution modes. Our extensive evaluation shows that this approach achieves optimal performance in a wide variety from settings---low latency for small data sets and maximum throughput for large data sizes

    High level synthesis of RDF queries for graph analytics

    Get PDF
    In this paper we present a set of techniques that enable the synthesis of efficient custom accelerators for memory intensive, irregular applications. To address the challenges of irregular applications (large memory footprint, unpredictable fine-grained data accesses, and high synchronization intensity), and exploit their opportunities (thread level parallelism, memory level parallelism), we propose a novel accelerator design that employs an adaptive and Distributed Controller (DC) architecture, and a Memory Interface Controller (MIC) that supports concurrent and atomic memory operations on a multi-ported/multi-banked shared memory. Among the multitude of algorithms that may benefit from our solution, we focus on the acceleration of graph analytics applications and, in particular, on the synthesis of SPARQL queries on Resource Description Framework (RDF) databases. We achieve this objective by incorporating the synthesis techniques into Bambu, an Open Source high-level synthesis tools, and interfacing it with GEMS, the Graph database Engine for Multithreaded Systems. The GEMS' front-end generates optimized C implementations of the input queries, modeled as graph pattern matching algorithms, which are then automatically synthesized by Bambu. We validate our approach by synthesizing several SPARQL queries from the Lehigh University Benchmark (LUBM)

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    Model-Based Simulation at Runtime for Self-Adaptive Systems

    Full text link

    Master of Science

    Get PDF
    thesisOperating system (OS) kernel extensions, particularly device drivers, are one of the primary sources of vulnerabilities in commodity OS kernels. Vulnerabilities in driver code are often exploited by attackers, leading to attacks like privilege escalation, denial-of-service, and arbitrary code execution. Today, kernel extensions are fully trusted and operate within the core kernel without any form of isolation. But history suggests that this trust is often misplaced, emphasizing a need for some isolation in the kernel. We develop a new framework for isolating device drivers in the Linux kernel. Our work builds on three fundamental principles: (1) strong isolation of the driver code; (2) reuse of existing driver while making no or minimal changes to the source; and (3) achieving same or better performance compared to the nonisolated driver. In comparison to existing driver isolation schemes like driver virtual machines and user-level device driver implementations, our work strives to avoid modifying existing code and implements an I/O path without incurring substantial performance overhead. We demonstrate our approach by isolating a unmodified driver for a null block device in the Linux kernel, achieving near-native throughput for block sizes ranging from 512B to 256KB and outperforming the nonisolated driver for block sizes of 1MB and higher
    • …
    corecore