1,001 research outputs found

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    Implementation of Event-Based Dynamic Authentication on MQTT Protocol

    Get PDF
    This paper proposes an authentication mechanism on the MQ Telemetry Transport (MQTT) protocol. The exchange of data in the IoT system became an important activity. The MQTT protocol is a fast and lightweight communication protocol for IoT. One of the problems with the MQTT protocol is that there is no security mechanism in the initial setup. One security attack may occur during the client registration phase. The client registration phase has a vulnerability to accept false clients due to the absence of an authentication mechanism. An authentication mechanism has been previously made using Transport Layer Security (TLS). However, the TLS mechanism consumes more than 100 KB of data memory and is not suitable for devices that have limitations. Therefore, a suitable authentication mechanism for constraint devices is required. This paper proposes a protocol for authentication mechanisms using dynamic and event-based authentication for the MQTT protocol. The eventbased is used to reduce the computing burden of constraint devices. Dynamic usage is intended to provide different authentication properties for each session so that it can improve authentication security. As results, the applied of the event-based dynamic authentication protocol was successful in the constraint devices of  microcontrollers and broker. The microcontroller, as a client, is able to process the proposed protocol. The client uses 52% of the memory for the proposed protocol and only consumes 2% higher than the protocol without security. The broker can find authentic clients and constraint devices capable of computing to carry out mutual authentication processes to clients. The broker uses a maximum of 4.3 MB of real memory and a maximum CPU usage of 3.7%

    Security for the Industrial IoT: The Case for Information-Centric Networking

    Full text link
    Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner. In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.Comment: To be published at IEEE WF-IoT 201

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement

    MQTT-PRESENT: Approach to secure internet of things applications using MQTT protocol

    Get PDF
    The big challenge to raise for deploying the application's domain of the Internet of Things is security. As one of the popular messaging protocols in the IoT world, the message queue telemetry transport (MQTT) is designed for constrained devices and machine-to-machine communications, based on the publish-subscribe model, it offers a basic authentication using username and password. However, this authentication method might have a problem in terms of security and scalability. In this paper, we provide an analysis of the current research in the literature related to the security for the MQTT protocol, before we give a brief description of each algorithm used on our approach, to finally propose a new approach to secure this protocol based on AugPAKE algorithm and PRESENT encryption. This solution provides mutual authentication between the broker and their clients (publishers and subscribers), the confidentiality of the published message is protected twice, the integrity and non-repudiation of MQTT messages which is protected during the process of transmission

    Platforms and Protocols for the Internet of Things

    Get PDF
    Building a general architecture for the Internet of Things (IoT) is a very complex task, exacerbated by the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we identify the main blocks of a generic IoT architecture, describing their features and requirements, and analyze the most common approaches proposed in the literature for each block. In particular, we compare three of the most important communication technologies for IoT purposes, i.e., REST, MQTT, and AMQP, and we also analyze three IoT platforms: openHAB, Sentilo, and Parse. The analysis will prove the importance of adopting an integrated approach that jointly addresses several issues and is able to flexibly accommodate the requirements of the various elements of the system. We also discuss a use case which illustrates the design challenges and the choices to make when selecting which protocols and technologies to use

    Attack Scenarios and Security Analysis of MQTT Communication Protocol in IoT System

    Get PDF
    Various communication protocols are currently used in the Internet of Things (IoT) devices. One of the protocols that are already standardized by ISO is MQTT protocol (ISO / IEC 20922: 2016). Many IoT developers use this protocol because of its minimal bandwidth requirement and low memory consumption. Sometimes, IoT device sends confidential data that should only be accessed by authorized people or devices. Unfortunately, the MQTT protocol only provides authentication for the security mechanism which, by default, does not encrypt the data in transit thus data privacy, authentication, and data integrity become problems in MQTT implementation. This paper discusses several reasons on why there are many IoT system that does not implement adequate security mechanism. Next, it also demonstrates and analyzes how we can attack this protocol easily using several attack scenarios. Finally, after the vulnerabilities of this protocol have been examined, we can improve our security awareness especially in MQTT protocol and then implement security mechanism in our MQTT system to prevent such attac

    Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things

    Get PDF
    In the past, industrial control systems were ‘air gapped’ and isolated from more conventional networks. They used specialist protocols, such as Modbus, that are very different from TCP/IP. Individual devices used proprietary operating systems rather than the more familiar Linux or Windows. However, things are changing. There is a move for greater connectivity – for instance so that higher-level enterprise management systems can exchange information that helps optimise production processes. At the same time, industrial systems have been influenced by concepts from the Internet of Things; where the information derived from sensors and actuators in domestic and industrial components can be addressed through network interfaces. This paper identifies a range of cyber security and safety concerns that arise from these developments. The closing sections introduce potential solutions and identify areas for future research

    A survey of IoT security based on a layered architecture of sensing and data analysis

    Get PDF
    The Internet of Things (IoT) is leading today’s digital transformation. Relying on a combination of technologies, protocols, and devices such as wireless sensors and newly developed wearable and implanted sensors, IoT is changing every aspect of daily life, especially recent applications in digital healthcare. IoT incorporates various kinds of hardware, communication protocols, and services. This IoT diversity can be viewed as a double-edged sword that provides comfort to users but can lead also to a large number of security threats and attacks. In this survey paper, a new compacted and optimized architecture for IoT is proposed based on five layers. Likewise, we propose a new classification of security threats and attacks based on new IoT architecture. The IoT architecture involves a physical perception layer, a network and protocol layer, a transport layer, an application layer, and a data and cloud services layer. First, the physical sensing layer incorporates the basic hardware used by IoT. Second, we highlight the various network and protocol technologies employed by IoT, and review the security threats and solutions. Transport protocols are exhibited and the security threats against them are discussed while providing common solutions. Then, the application layer involves application protocols and lightweight encryption algorithms for IoT. Finally, in the data and cloud services layer, the main important security features of IoT cloud platforms are addressed, involving confidentiality, integrity, authorization, authentication, and encryption protocols. The paper is concluded by presenting the open research issues and future directions towards securing IoT, including the lack of standardized lightweight encryption algorithms, the use of machine-learning algorithms to enhance security and the related challenges, the use of Blockchain to address security challenges in IoT, and the implications of IoT deployment in 5G and beyond
    corecore