1,849 research outputs found

    Lightweight and Low-Energy Encryption Scheme for Voice over Wireless Devices

    Get PDF
    In this work, a novel lightweight and low energy encryption algorithm for voice over wireless networks is being developed and tested. The new encryption algorithm has to meet the QoS requirements of voice traffic and to be suitable for wireless devices. The goal of the research was to reduce the execution time and power consumption of the encryption process compared with the standard algorithm and at the same time at least to maintain or to increase its security level. The proposed algorithm employs similar methods with those used in the Advanced Encryption Standard algorithm (AES), with some changes and enhancements considering the limitations of wireless devices. The test results show significant improvements in new design metrics. A range of simulation scenarios are setup; testing data is analyzed to test delay, energy and security. Also, the comparison between the new algorithm and the standard one shows a significant amount of time and energy consumption reduction being achieved (approximately 35%), with good-level of complexity, making it more suitable for the wireless environment

    Revisiting Lightweight Encryption for IoT Applications: Error Performance and Throughput in Wireless Fading Channels with and without Coding

    Get PDF
    © 2013 IEEE. Employing heavy conventional encryption algorithms in communications suffers from added overhead and processing time delay; and in wireless communications, in particular, suffers from severe performance deterioration (avalanche effect) due to fading. Consequently, a tremendous reduction in data throughput and increase in complexity and time delay may occur especially when information traverse resource-limited devices as in Internet-of-Things (IoT) applications. To overcome these drawbacks, efficient lightweight encryption algorithms have been recently proposed in literature. One of those, that is of particular interest, requires using conventional encryption only for the first block of data in a given frame being transmitted. All the information in the remaining blocks is transmitted securely without the need for using heavy conventional encryption. Unlike the conventional encryption algorithms, this particular algorithm achieves lower overhead/complexity and higher data throughput. Assuming the additive white Gaussian noise (AWGN) channel, the performance of the lightweight encryption algorithm under study had been evaluated in literature in terms of throughput under the assumption that the first block, that undergoes conventional encryption, is free of error, which is practically unfeasible. In this paper, we consider the AWGN channel with Rayleigh fading and assume that the signal experiences a certain channel bit error probability and investigate the performance of the lightweight encryption algorithm under study in terms of bit error probability and throughput. We derive analytical expressions for these performance metrics considering modulated signals with and without coding. In addition, we propose an extension to the lightweight encryption algorithm under study by further enhancing its security level without significantly affecting the overhead size and processing time. Via numerical results we show the superiority of the lightweight encryption algorithm under study over the conventional encryption algorithms (like the AES) and the lightweight encryption algorithms proposed in literature in terms of error and throughput performance

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    Securing Our Future Homes: Smart Home Security Issues and Solutions

    Get PDF
    The Internet of Things, commonly known as IoT, is a new technology transforming businesses, individuals’ daily lives and the operation of entire countries. With more and more devices becoming equipped with IoT technology, smart homes are becoming increasingly popular. The components that make up a smart home are at risk for different types of attacks; therefore, security engineers are developing solutions to current problems and are predicting future types of attacks. This paper will analyze IoT smart home components, explain current security risks, and suggest possible solutions. According to “What is a Smart Home” (n.d.), a smart home is a home that always operates in consideration of security, energy, efficiency and convenience, whether anyone is home or not
    • 

    corecore