238 research outputs found

    Lightweight fine-grained search over encrypted data in fog computing

    Get PDF

    A lightweight secure adaptive approach for internet-of-medical-things healthcare applications in edge-cloud-based networks

    Get PDF
    Mobile-cloud-based healthcare applications are increasingly growing in practice. For instance, healthcare, transport, and shopping applications are designed on the basis of the mobile cloud. For executing mobile-cloud applications, offloading and scheduling are fundamental mechanisms. However, mobile healthcare workflow applications with these methods are widely ignored, demanding applications in various aspects for healthcare monitoring, live healthcare service, and biomedical firms. However, these offloading and scheduling schemes do not consider the workflow applications' execution in their models. This paper develops a lightweight secure efficient offloading scheduling (LSEOS) metaheuristic model. LSEOS consists of light weight, and secure offloading and scheduling methods whose execution offloading delay is less than that of existing methods. The objective of LSEOS is to run workflow applications on other nodes and minimize the delay and security risk in the system. The metaheuristic LSEOS consists of the following components: adaptive deadlines, sorting, and scheduling with neighborhood search schemes. Compared to current strategies for delay and security validation in a model, computational results revealed that the LSEOS outperformed all available offloading and scheduling methods for process applications by 10% security ratio and by 29% regarding delays

    Privacy-preserving data search with fine-grained dynamic search right management in fog-assisted Internet of Things

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fog computing, as an assisted method for cloud computing, collects Internet of Things (IoT) data to multiple fog nodes on the edge of IoT and outsources them to the cloud for data search, and it reduces the computation cost on IoT nodes and provides fine-grained search right management. However, to provide privacy-preserving IoT data search, the existing searchable encryptions are very inefficient as the computation cost is too high for the resource-constrained IoT ends. Moreover, to provide dynamic search right management, the users need to be online all the time in the existing schemes, which is impractical. In this paper, we first present a new fog-assisted privacy-preserving IoT data search framework, where the data from each IoT device is collected by a fog node, stored in a determined document and outsourced to the cloud, the users search the data through the fog nodes, and the fine-grained search right management is maintained at document level. Under this framework, two searchable encryption schemes are proposed, i.e., Credible Fog Nodes assisted Searchable Encryption (CFN-SE) and Semi-trusted Fog Nodes assisted Searchable Encryption (STFN-SE). In CFN-SE scheme, the indexes and trapdoors are generated by the fog nodes, which greatly reduce the computation costs at the IoT devices and user ends, and fog nodes are used to support offline users’ key update. In STFN-SE scheme, the semi-trusted fog nodes are used to provide storage of encrypted key update information to assist offline users’ search right update. In both schemes, no re-encryption of the keywords is needed in search right updates. The performance evaluations of our schemes demonstrate the feasibility and high efficiency of our system.National Key Research and Development ProgramNational Natural Science Foundation of ChinaSichuan Provincial Major Frontier IssuesState Key Laboratory of Integrated Services Networks, Xidian Universit

    A HYBRIDIZED ENCRYPTION SCHEME BASED ON ELLIPTIC CURVE CRYPTOGRAPHY FOR SECURING DATA IN SMART HEALTHCARE

    Get PDF
    Recent developments in smart healthcare have brought us a great deal of convenience. Connecting common objects to the Internet is made possible by the Internet of Things (IoT). These connected gadgets have sensors and actuators for data collection and transfer. However, if users' private health information is compromised or exposed, it will seriously harm their privacy and may endanger their lives. In order to encrypt data and establish perfectly alright access control for such sensitive information, attribute-based encryption (ABE) has typically been used. Traditional ABE, however, has a high processing overhead. As a result, an effective security system algorithm based on ABE and Fully Homomorphic Encryption (FHE) is developed to protect health-related data. ABE is a workable option for one-to-many communication and perfectly alright access management of encrypting data in a cloud environment. Without needing to decode the encrypted data, cloud servers can use the FHE algorithm to take valid actions on it. Because of its potential to provide excellent security with a tiny key size, elliptic curve cryptography (ECC) algorithm is also used. As a result, when compared to related existing methods in the literature, the suggested hybridized algorithm (ABE-FHE-ECC) has reduced computation and storage overheads. A comprehensive safety evidence clearly shows that the suggested method is protected by the Decisional Bilinear Diffie-Hellman postulate. The experimental results demonstrate that this system is more effective for devices with limited resources than the conventional ABE when the system’s performance is assessed by utilizing standard model
    • …
    corecore